Microsoft. Windows™
Software Development Kit

development tools for building Microsofte Windows applications

Guide to Programming
VERSION 3.0

for the MS-DOS . and PC-DOS Operating Systems

Microsoft Corporation

Information in this document is subject to change without notice and does not represent
a commitment on the part of Microsoft Corporation. The software described in this docu-
ment is furnished under a license agreement or nondisclosure agreement. The software
may be used or copied only in accordance with the terms of the agreement. It is against
the law to copy the software on any medium except as specifically allowed in the license
or nondisclosure agreement. No part of this manual may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopying and record-
ing, for any purpose without the express written permission of Microsoft.

©Copyright Microsoft Corporation, 1990. All rights reserved.
Simultaneously published in the U.S. and Canada.

Printed and bound in the United States of America.

Microsoft, MS, MS-DOS, GW-BASIC, QuickC, CodeView, and XENIX are registered
trademarks and Windows is a trademark of Microsoft Corporation.

Aldus is a registered trademark of Aldus Corporation.
COMPAQ is a registered trademark of Compaq Computer Corporation.
Epson is a registered trademark of Epson America, Inc.

Hewlett-Packard, HP Laserjet, and PCL are registered trademarks of Hewlett-Packard
Company.

IBM is a registered trademark and PC/XT is a trademark of International Business
Machines Corporation.

Intel is a registered trademark of Intel Corporation.
Lotus and 1-2-3 are registered trademarks of Lotus Development Corporation.
Paintbrush is a registered trademark of Zsoft Corporation.

Tandy is a registered trademark of Tandy Corporation.

Document No. SY0314a-300-R00-1089

iii

Table of Contents

Introduction

What Should You Know Before You Start? Xix
About ThiSGUIdecvviiiiiii ittt it ieeeeeeneannnennss XX
What Tools Do YouNeed?coviiiiiiiiiiiiiiiiinneenenn. Xxii
Using the Sample Applicationsocoviiiiiiinn.. xxiii
Document Conventionsoovevreenteenenenneenenenenennns XXiv

PART 1 Introduction to Writing Windows Applications

Chapter 1 An Overview of the Windows Environment

1.1 Microsoft Windows and DOS: a Comparison 1-1
1.1.1 The User Interface ciiion... 1-2
1.1.2 QueuedInput ...l 1-2
1.1.3 Device-Independent Graphics 1-3
1.1.4 Multitaskingooviiii i 1-3
1.2 The Windows Programming Model 1-4
1.2.1 WIndowscoviiniiiiiiii i 14
1.2.2 MeNUS ..vvviiiiiiiiiin ittt 1-5
1.2.3 Dialog BoXes .. .ovvviiiiiiiiii i 1-6
1.2.4 The MessageLoopcoiiiiiiiiiiinen. 1-6
1.3 The Windows Libraries o o, 19
1.4 Building a Windows Applicationocciiun... 1-10
1.5 Software Development Toolst 1-11
1.51 CCompilercovviiiiiiiiininnnnnnnnnn. 1-12
1.5.2 TheLinkercooiiiiiiiiiiiiiiiiinan, 1-12
1.5.3 The SDK Resource Editors 1-13
1.54 TheResource Compiler.................oooun.e. 1-13
1.5.5 Debugging and Optimization Tools 1-14
1.5.6 The Program Maintainer 1-15
1.6 Tips for Writing Windows Applications 1-16

17 SUMMArY .. .oviii ittt i iae e 1-17

iv Contents
]

Chapter 2 A Generic Windows Application

2.1 The Generic Applicationccoviuiiiiinennnennne. 2-1
22 AWindows Applicationcooiiiiiiiiiiiii..n 2-2
23 TheWinMainFunctioncoiiiiiiiiiiii... 2-2
2.3.1 Data Types and Structures in Windows 2-3
2.3.2 Handlescooiiiiiiiiii ittt 2-4
233 Instancescoiuiiiiiiiiiiiiiii i 2-5
234 Registering the Window Class 2-6
2.3.5 CreatingaWindowcooiviiiiinn.... 29
2.3.6 Showing and Updatinga Window 2-11
2.3.7 Creating the Message Loop 2-11
2.3.8 YieldingControlccciiiiiininnn... 2-12
2.39 Terminating an Application 2-13
2.3.10 Initialization Functions 2-14
2.3.11 The Application Command-Line Parameter 2-15
24 TheWindowFunctionc.ovviiiinenn... 2-16
2.5 Creating an About DialogBoxcovviuivenn.... 2-17
2.5.1 Creating a Dialog-Box Template 2-18
252 CreatinganInclude File 2-20
2.5.3 Creating a Dialog Function 2-20
254 Defining a Menu with an About Command 2-21
2.5.5 Processing the WM_COMMAND Message 2-22
2.6 Creating a Module-DefinitionFile 2-23
2.7 Putting GenericTogethero, 2-26
2.7.1 Create the C-Language Source File 2-26
272 Createthe HeaderFile 2-31
2.7.3 Create the Resource Script File 2-32
2.74 Create the Module-Definition File 2-32
2.7.5 CreateaMakeFile 2-33
2.7.6 Run the MAKEProgramccoon.. 2-34
2.8 UsingGenericasaTemplatecovvevuveenenn.. 2-34

29 Summary ... i i et 2-36

Contents v

PART 2 Programming Windows Applications

Chapter 3
3.1

32
33
34

35

Chapter 4
4.1

4.2

Output to a Window
The Display Contextoueeetineinieinneinneennnenns 3-1
3.1.1 Using the GetDC Function 3-2
312 The WM_PAINT Messagecocvvuvenienen.. 3-2
3.1.3 Invalidatingthe Client Area 33
3.1.4 Display Contexts and Device Contexts 34
3.1.5 The Coordinate Systemcovveenn.. 34
Creating, Selecting, and Deleting Drawing Tools 34
Drawingand Writing oo, 3-6
A Sample Application: Outputcoviiiiiiininn. 3-8
34.1 AddNew Variablescooviiiiiiiian.. 3-8
342 Addthe WM_CREATECaSEc.ovvvvvvnnnn.. 3-9
343 Addthe WM_PAINTCaseccoovviivennnnn. 39
344 Modify the WM_DESTROY Case 3-13
34.5 CompileandLinko tn. 3-13
Summary ...t e 3-14

Keyboard and Mouse Input

Windows Input Messagesooiiiiiiiiiiiiii... 4-1
4.1.1 Message Formatscovviiiiiiiniinnn.. 4-2
4.1.2 KeyboardInputccoiiiiiiiiii, 4-2
4.1.3 CharacterInputcoiiiiiiiiinenn.. 4-3
4.1.4 MouseInputcooviiiiiiiiiiiin .. 4-3
4.1.5 TimerInput il 4-4
4.1.6 Scroll-BarInputcooviiiiniieinnennenn.n. 4-5
4.1.7 Menulnput i, 4-6
A Sample Application:Input ool 4-6
4.2.1 How the Input Application Displays Output 4-7
4.2.2 Add New Variablescooiiiiias. 4-8
423 Set the Window-Class Style 4-9
424 Modify the CreateWindow Function 4-9
4.2.5 Setthe TextRectangles 4-9
426 Addthe WM_CREATECasecccn... 4-10

4.2.7 Modify the WM_DESTROY Case 4-10

vi Contents
[

42.8 Add the WM_KEYUPand WM_KEYDOWN Cases . 4-10

429 Addthe WM_CHARCaseccoovvvvennn. 4-11
42.10 Addthe WM_MOUSEMOVECase 4-11
4.2.11 Addthe WM_LBUTTONUP and
WM_LBUTTONDOWN Casescovuunnnn 4-11
42.12 Addthe WM_LBUTTONDBLCLK Case 4-11
42.13 Addthe WM_TIMERCasecc.oovuenn. 4-12
4.2.14 Add the WM_HSCROLL and WM_VSCROLL Cases 4-12
42.15 Addthe WM_PAINTCaseccovvveennn. 4-12
42.16 CompileandLinkooiiiiiiiiniiinnn, 4-13
43 SUMMAIY ..ottt iiii ittt 4-14

Chapter 5 Icons

5.1 WhatisanIcon?ccovniniiiiiiiii it 5-1
5.1.1 Using Built-InIconscoiiiiiiinnn, 5-2
5.2 UsingYourOwnlconscoiiiiiiiiiiiiinenn.. 5-3
5.2.1 CreatinganIconFile 53
522 Defining the IconResource 5-3
5.2.3 Loading the IconResourcecovvunn, 5-3
53 SpecifyingaClassIconcoiiiiiiiiiiiiian, 54
54 Displaying YourOwnlconscovviiuiinen... 54
5.5 Displaying anIlconinaDialogBox ut 5-6
5.6 ASample Application:Icono.viiiiiiiiiiiin 5-6
5.6.1 AddanICON Statementc.ovvuvennnennns 5-7
5.6.2 AddanICON Control Statement 5-7
5.6.3 SettheClassIconcooiiiiiiin.s, 5-7
5,64 Add MYICON.ICOto the Make File 5-8
5,65 CompileandLinkcooiiiiiiin.. 5-8
57 SUMMAIY ..ottt i ttaeeteaeeaneenaeanns 5-8

Chapter 6 The Cursor, the Mouse, and the Keyboard

6.1 Controlling the Shape of the Cursorcuu... 6-1
6.1.1 Using Built-In Cursor Shapes 6-1
6.1.2 Using Your Own Cursor Shapes 6-2
6.2 DisplayingtheCursorottt 6-3
6.2.1 Specifyinga Class Cursorooevvennnenenn. 6-3

6.2.2 Explicitly Setting the Cursor Shape 6-3

Contents vii

6.3

6.4

6.5

6.6

Chapter 7

7.1
7.2

7.3

7.4
1.5

6.2.3 Example: Displaying the Hourglass on a Lengthy

Operationcooviiiiiiiii i, 6-4
Letting the User Select Information with the Mouse 6-5
6.3.1 Starting a Graphics Selection 6-6
6.3.2 Showingthe Selectioncovviiunann. 6-8
6.3.3 Ending the Selection L. 6-9
Using the Cursor with the Keyboard 6-10
6.4.1 Using the Keyboard to Move the Cursor 6-10
6.4.2 Using the Cursor when No Mouse Is Available 6-13
A Sample Application: Cursorccoveiienennenn.. 6-14
6.5.1 Add the CURSOR Statement 6-15
6.52 AddNew Variablest 6-15
6.5.3 Setthe Class Cursorcovveiiniennnnnn. 6-16
6.5.4 Prepare the Hourglass Cursor 6-16
6.5.5 Add aLengthy Operation 6-16

6.5.6 Add the WM_LBUTTONDOWN,
WM_MOUSEMOVE, and WM_LBUTTONUP

CaSES v vttt i i e i e 6-18
6.5.7 Addthe WM_KEYDOWN and WM_KEYUP Cases . 6-19
6.5.8 Addthe WM_PAINTCasecoovvvuvennnnnn 6-21
6.59 Add BULLSEYE.CUR to the Make file 6-21
6.5.10 CompileandLinko, 6-21
SUMMATY .. oi it i ittt ittt i 6-22

Menus

WhatisaMenu?coiiiniiiiiiiiiiiii i, 7-1
DefiningaMenuoooiiiiiiiiiiiiin i, 7-2
7.2.1 MenulIDsooviiiiii it 7-3
Including a Menu in Your Application 7-4
7.3.1 Specifying the Menu for a Window Class 7-4
7.3.2 Specifying a Menu for a Specific Window 7-4
Processing InputfromaMenuca... 7-6
Working with Menus from Your Application 7-7
7.5.1 Enabling and Disabling MenuItems 7-7
7.5.2 Checking and Unchecking Menu Items 7-8
7.5.3 AddingMenultemscociiii... 7-9
7.5.4 Changing ExistingMenus 7-10

7.5.5 DeletingaMenultem 7-11

viii Contents
]

7.5.6 UsingaBitmapasaMenultem 7-12
7.5.7 ReplacingaMenucoiiienann.. 7-13
7.5.8 CreatingaNewMenucu.... 7-13
7.5.9 InitializingaMenu i, 7-14
7.6 Special MenuFeaturescoviviiiniiniinnann... 7-15
7.6.1 Providing Menu-AcceleratorKeys 7-15
7.6.2 Using CascadingMenuscovvunnn.. 7-19
7.6.3 Using Floating Pop-upMenus 7-20
7.6.4 Designing Your Own Checkmarks 7-22
7.6.5 Using Owner-Draw Menus 7-23
7.7 ASample Application: EditMenu 7-25
7.7.1 Add New Menus to the Resource File 7-25
7.7.2 Add Definitions to the Include File 7-26
1.1.3 Add an Accelerator Table to the Resource Script File . 7-27
7.7.4 AddaNew Variable 7-27
7.7.5 Load the Accelerator Table 7-28
7.7.6 Modify the MessageLoop 7-28
7.7.7 Modify the WM_COMMAND Case 7-28
7.7.8 CompileandLinkcooiiiiiiiiaaan.. 7-29
7.8 SUMMAIYoiitiiiiiii it i e 7-29

Chapter 8 Controls

81 WhatisaControl?c.coiuiniiiiiiiiniiiiinneann.. 8-1
82 CreatingaControlcvviiiiininnneennennnnnnn. 8-1
8.2.1 Specifyinga Control Classc.couen.. 8-2
8.2.2 ChoosingaControl Style 8-3
8.2.3 Setting the Parent Window 8-4
8.24 ChoosingaControl ID 8-4
8.3 UsingaControlcciiiiiinnininnennennenennenns 8-5
8.3.1 ReceivingUserInput 8-5
8.3.2 Sending Control Messagescoovvvveennn.. 8-5
8.3.3 Disabling and Enabling Input to a Control 8-6
8.34 Moving and SizingaControl 8-6
8.3.5 DestroyingaControlvviieenneennennnn.. 8-7
8.4 Creating and Using Some Common Controls 8-7
8.4.1 ButtonControlsoviiiiiii i 8-7

8.4.2 StaticControlso vt e 8-11

8.5
8.6

8.7

Chapter 9
9.1

9.2

9.3

9.4

8.4.3 List BOXES ...vvivrininie it 8-12
8.4.4 COombOBOXES . vvvvveineenrienenenenenenn 8-21
8.4.5 EditControlscooivieiineinnenennennenns 8-23
8.4.6 ScrollBarsoviiiit i e 8-25
A Sample Application: EditCntl 8-27
Add aConstanttothe IncludeFile 8-28
8.6.1 Add New Variablesccoviiiiinian.. 8-28
8.6.2 Add a CreateWindow Function 8-28
8.6.3 Modify the WM_COMMAND Case 8-30
8.6.4 AddaWM_SETFOCUSCasec.ccovunun.. 8-30
8.6.5 AddaWM_SIZECasecovveeenvununnnnennn 8-30
8.6.6 CompileandLinko, 8-31
SUMMATY .« .ottt ittt ittt ittt it it iieieaaaaannn 8-31

Dialog Boxes

WhatIsaDialog Box?ooiiiiiiiiiiiii .. 9-1
9.1.1 Modal Dialog BoXesccvviiiiiiinenennnn 9-2
9.1.2 Modeless DialogBoxescooiviiinnnn.n. 9-2
UsingaDialogBoxcovviiiiiiiiiiiiiiiiian.. 9-3
9.2.1 Creating a Dialog Function 9-3
9.2.2 Using Controls in Dialog Boxes 94
A Sample Application: FileOpenccooou... 9-5
9.3.1 Add Constants to the Include File 9-6
9.3.2 Create the Open Dialog-Box Template 9-6
9.3.3 Add New Variablesoooiiiiin.t. 9-8
934 AddtheIDM OPENCasecovvvvvunnnnnn 9-8
9.3.5 Create the OpenDlg Function 9-9
9.3.6 AddHelperFunctionscooiiintn 9-12
9.3.7 Export the Dialog Function 9-13
938 CompileandLinkooiiiiiiii.., 9-14
SUMMALY .+ ot iet ettt it ittt ittt eiie e 9-14

Chapter 10 File Input and Output

10.1
10.2
10.3
104

Rules for Handling Files in the Windows Environment 10-1
CreatingFilesoiiiiiiiiiiiiiiii i, 10-3
Opening ExistingFileso oo, 10-4

Reading To and Writing FromFiles 10-5

Contents

ix

x Contents
'

10.5 ReopeningFilescooiiiiiiiiiiiiiiiiinnnn... 10-5
10.6 PromptingforFilesccciiiiiiiiiiiiinnnn., 10-6
10.7 CheckingFileStatusciiiiiieinnnennnnn.. 10-6
10.8 A Simple File Editor: EditFile 10-6
10.8.1 Add aConstant to the Include File 10-7
10.8.2 AddaSaveAs Dialog Box I 10-7
10.8.3 AddInclude Statementsccuieunn.. 10-8
10.8.4 AddNew Variablesoovvuenn... 10-8
10.8.5 Replace the WM_COMMAND Case 10-9

10.8.6 Add the WM_QUERYENDSESSION and
WM_CLOSECaS€S ...ovviirinrnneenneennnnn 10-11
10.8.7 Modify the OpenDlg Dialog Function 10-12
10.8.8 Add the SaveAsDlg Dialog Function 10-13
10.8.9 AddHelperFunctionscoovvvvnenn.. 10-14
10.8.10 Export the SaveAsDlg Dialog Function 10-17
10.8.11 Add SpacetotheHeap 10-18
10.8.12 CompileandLinkciiieun..... 10-18
109 SUMMALY ...iviinniitiiieeeineeenenenneenaeannnnn 10-18

Chapter 11 Bitmaps

11.1 WhatisaBitmap?cciiiiiiiiiiiiinnenn.... 11-1

11.2 CreatingBitmapsc.oviiiiiiiiiiiiinennennnnn. 11-2

11.2.1 Creating and Loading Bitmap Files 11-2

11.2.2 Creating and Filling a Blank Bitmap 11-3

11.2.3 Creating a Bitmap with Hard-Coded Bits 11-5

1124 DrawingaColorBitmap........................ 11-8

11.3 Displaying Bitmapsccvuiiiiiirinnenennnnannns 11-9
11.3.1 Using the BitBlt Function to Display a Memory

Bitmap ..ottt e 11-9

11.3.2 StretchingaBitmapccvvuun... 11-11

11.3.3 UsingaBitmapinaPatternBrush 11-12

11.3.4 Displaying a Device-Independent Bitmap 11-13

11.3.5 UsingaBitmapasaMenultem 11-15

11.4 Adding Color to Monochrome Bitmaps 11-15

11.5 DeletingBitmapsc.ccoitiiiiiiiiinnennennn. 11-16

11.6 A Sample Application: Bitmap 11-16

11.6.1 Modify the Include File 11-17

11.6.2 Add the Bitmap Resources 11-18

Contents xi

11.7

11.6.3 Add the Bitmap, Pattern, and Mode Menus 11-18
11.6.4 Add Global and Local Variables 11-19
11.6.5 Addthe WM_CREATECase 11-20
11.6.6 Modify the WM_DESTROY Case 11-23
11.6.7 Add WM_LBUTTONUP, WM_MOUSEMOVE, and
WM_LBUTTONDOWN Casesccocuuen. 11-23
11.6.8 Add the WM_RBUTTONUPCase 11-24
11.6.9 Add the WM_ERASEBKGND Case 11-24
11.6.10 Modify the WM_COMMAND Case 11-25
11.6.11 Modify the Makefile................., 11-27
11.6.12 CompileandLink 11-27
SUMMATY .. oi ettt ittt ittt iiie i 11-27

Chapter 12 Printing

12.1

12.2
12.3
12.4
12.5
12.6

12.7
12.8

12.9

Printing in the Windows Environment 12-1
12.1.1 Using Printer Escapescovinn. 12-2
Retrieving Information About the Current Printer 12-2
PrintingaLineof Textcciiiiiiiiiaan.. 12-4
PrintingaBitmapcoiiiiiiiiiiiiiiiiiiean., 12-5
Processing Errors During Printingo... 12-7
Canceling aPrint Operationccoiviiiiennn .. 12-8
12.6.1 Defining an Abort DialogBox 12-9
12.6.2 Defining an Abort Dialog Function 12-9
12.6.3 Defining an Abort Function..................... 12-10
12.6.4 Performing an Abortable Print Operation 12-12
12.6.5 Canceling a Print Operation with the ABORTDOC

ESCape ..vvvviiiiiiiii ittt 12-13
Using Banding to Print Imagesovun... 12-13
A Sample Application: PrntFile 12-15
12.8.1 Addan AbortDlg DialogBox 12-15
12.8.2 Add Variables forPrinting 12-16
12.8.3 AddtheIDM PRINTCasecoounn... 12-16
12.8.4 Create the AbortDlg and AbortProc Functions 12-19
12.8.5 Add the GetPrinterDC Function 12-20
12.8.6 Export the AbortDlg and AbortProc Functions...... 12-21
12.8.7 CompileandLink 12-21

SUMIMATY .« ovvvitiieiiiiiiiiiie i iiae e iiineeeennnns 12-21

Xii Contents
X

Chapter 13 The Clipboard

13.1 Usingthe Clipboardcoovviiiiiiiiiiiiina., 13-1
13.1.1 Copying Text to the Clipboard 13-2
13.1.2 Pasting Text from the Clipboard 134
13.1.3 Pasting Bitmaps from the Clipboard 13-7
13.1.4 The Windows Clipboard Application 13-9
13.2 Use Special Clipboard Features 13-9
13.2.1 Rendering DataonRequest 13-9
13.2.2 Rendering Formats Before Termination 13-10
13.2.3 Registering Private Formats 13-10
13.2.4 Controlling Data Display in the Clipboard 13-11
13.3 A Sample Application: ClipText 13-13
13.3.1 AddNew Variablesc.ooiviivnnian.. 13-14
13.3.2 Modify the Instance Initialization Code 13-14
13.3.3 AddaWM_INITMENUCasecoovnn.. 13-15
13.3.4 Modify the WM_COMMAND Case 13-15
13.3.5 AddaWM_PAINTCaseccovvvvnnnnnn. 13-17
13.3.6 Add the OutOfMemory Function 13-18
13.3.7 CompileandLinkt 13-18
134 SUMMATY . ..vvniitiiiiiie ittt iiieeinerneennnanns 13-19

PART 3 Advanced Programming Topics

Chapter 14 C and Assembly Language

14.1 ChoosingaMemoryModell 14-1
142 UsingNULL ...ttt iiiiiaeeennnns 14-2
14.3 Using Command-Line Arguments and the DOS Environment .. 14-3
144 Writing Exported Functionscooiiiian., 14-4
14.4.1 Creating a Callback Procedure 144
14.42 Creating the WinMain Function 14-5
14.5 Using CRun-Time Functionsooiaunt. 14-6
14.5.1 Using Windows C Libraries 14-6
14.52 Allocating Memoryccveeieunennnnnnn 14-7
14.5.3 Manipulating Strings i, 14-7
1454 UsingFileInputandOutput 14-9

14.5.5 Using Console Inputand Output 14-9

14.6

14.7

14.5.6 Using Graphics Functions 14-10
14.5.7 Using Floating-Point Arithmetic 14-10
14.5.8 Executing Other Applications 14-11
14.5.9 Using BIOS and MS-DOS Interface Functions 14-11
14.5.10 Eliminating C Run-Time Start-up Code 14-11
Writing Assembly-LanguageCodet 14-13
14.6.1 Modifying the Interrupt Flag 14-14
14.6.2 Writing Exported Functions in Assembly Language . 14-15
14.6.3 Usingthe ESRegisterccoiviin.... 14-16
SUMMAIY ..ottt iiit ittt it iiieeriaaanaaannnns 14-17

Chapter 15 Memory Management

15.1

15.2

15.3

154

USing MEMOTY . ..vvviitiiiiniiii it iineeiaanananns 15-1
15.1.1 UsingtheGlobalHeapccoovunn.... 15-2
15.1.2 UsingtheLocalHeapccoviinnt. 15-3
15.1.3 Working with Discardable Memory 15-5
UsSiNg SEGMENLS .. ovvviiiiii i itiereeneennenaennes 15-6
152.1 UsingCodeSegmentscovvuveneunennnn 15-7
1522 TheDATASegment........coovviuiuninnennnnnnn 15-8
A Sample Application: MEmMOIyoovvrrninneennnnnns 15-8
15.3.1 Split the C-Language Source File 15-9
15.3.2 ModifytheIncludeFile 15-10
15.3.3 Add New Segment Definitions 15-10
1534 ModifytheMakeFile 15-11
15.3.5 CompileandLinkcooiiiiiiiin., 15-11
SUMMAIY .« ot iee ittt it ittt ittt eiienneannns 15-12

Chapter 16 More Memory Management

16.1

16.2

Windows Memory Configurations 16-1
16.1.1 The Basic Memory Configuration 16-2
16.1.2 The EMS 4.0 Memory Configuration 16-4

16.1.3 The Windows Standard Mode Memory Configuration 16-9
16.1.4 The Windows 386 Enhanced Mode Memory

Configurationciiiiiiiiiininnn. 16-13
Using Data Storage in Windows Applications 16-16
16.2.1 Managing Automatic Data Segments 16-18

16.2.2 Managing Local Dynamic-Data Blocks 16-20

Contents Xxiii

Xxiv Contents
. |

16.2.3 Managing Global Memory Blocks 16-24

16.2.4 Using Extra Bytes in Window and Class Data
StuUCturesovveiiiiii e 16-31
16.2.5 ManagingResources...........ccovvuveunnnnn.. 16-32
16.3 UsingMemoryModelsccoviiiininnnennnnn.. 16-35
164 UsingHugeDataccoiiiiiiiiiniiinnnnnnn.. 16-36
16.5 Traps to Avoid in Managing Program Data 16-37
16.6 Managing Memory for ProgramCode 16-40
16.6.1 Using Code-Segment Attributes 16-40
16.6.2 Using Multiple Code Segments 16-41
16.6.3 Balancing Code Segments 16-41
16.6.4 The Order of Code Segments in the .DEF File 16-42
16.7 SUmMmMaryoviiiiiiieeennnenneenneennnennnnns 16-42

Chapter 17 Print Settings

17.1 How Windows Manages Print Settings 17-2
17.1.1 Print Settings and the DEVMODE Structure 17-2
17.1.2 Print Settings and the Printer Environment 17-3
17.2 Using Device-Driver Functionsc..cou.... 174
17.3 Finding Out the Capabilities of the Printer Driver 17-5
17.4 Working with Print Settingsoo... 17-6
17.4.1 Specifying ExtDeviceMode Input and Output 17-7
1742 Getting a Copy of the Print Settings 17-8
17.4.3 Changing the Print Settings 17-9
17.4.4 Tailoring Print Settings for Use with CreateDC 17-10

17.4.5 Changing the Print Settings Without Affecting Other
Applicationsciiiiiiiiiii i, 17-12
17.4.6 Prompting the User for Changes to the Print Settings 17-13
17.5 Copying Print Settings Between Drivers 17-14
17.6 Maintaining Your Own Print Settings 17-15
17.7 Working with Older Printer Drivers 17-15
178 Summaryc.coiiiiiiiiiiii it it e 17-16

Chapter 18 Fonts

181 Writing TexXt ...ttt 18-1
18.2 Using Color when Writing Textooveeuunann.... 18-1
18.3 UsingStockFontsccciiiiiiiiiininennnnnn. 18-2

Contents xv

18.4
18.5
18.6
18.7
18.8
18.9
18.10
18.11
18.12

18.13
18.14

CreatingaLogicalFontoiiiiiiiien, 184
Using Multiple FontsinaLine o0t 18-5
Getting Information About the Selected Font 18-6
Getting Information About a Logical Font 18-7
Enumerating Fontscooiiiiiiiiiiiiiii.., 18-8
Checking a Device’s Text Capabilities 18-10
AddingaFontResource, 18-11
Setting the Text Alignmentc.ooeiiiniennn, 18-12
Creating Font-Resource Filesalt. 18-13
18.12.1 CreatingFontFileso, 18-13
18.12.2 Creating the Font-Resource Script 18-13
18.12.3 Creating the Dummy Code Module 18-14
18.12.4 Creating the Module-DefinitionFile 18-14
18.12.5 Compiling and Linking the Font-Resource File 18-16
A Sample Application: ShowFont 18-16
SUMMALY .+ .t ovi ittt it iieeiieriaeaenenenaanns 18-16

Chapter 19 Color Palettes

19.1
19.2
19.3

19.4

19.5
19.6

19.7

What a Color Palette Doescooiivivenann, 19-1
How Color Palettes Workccoiiviiiiniiain.t, 19-2
Creating and Using a LogicalPalette 19-3
19.3.1 Creating a LOGPALETTE Data Structure 194
19.3.2 Creating a Logical Palette 19-6
19.3.3 Selecting the Palette Into a Device Context 19-7
19.3.4 RealizingthePalettecoooviuna.. 19-7
Drawing With Palette Colorsoooieeaea... 19-7
19.4.1 Directly Specifying Palette Colors 19-8
19.4.2 Indirectly Specifying Palette Colors 19-9
19.4.3 Using a Palette When Drawing Bitmaps 19-10
Changing aLogical Palette 19-11
Responding to Changes in the System Palette 19-13
19.6.1 Responding to WM_QUERYNEWPALETTE 19-13
19.6.2 Responding to WM_PALETTECHANGED........ 19-14
SUMMATY .+t vttt iiiieeeeennanaaanns 19-15

Chapter 20 Dynamic-Link Libraries

20.1

WhatisaDLL?oitiii ittt eieannn 20-1

xvi Contents
. |

20.1.1 Import Librariesand DLLs 20-2
20.1.2 DLL and Application Modules 20-3
20.1.3 DLLsandTasksccoviiuiennnennnnnn.. 20-4
20.14 DLLsand Stacksccevuiireeunnnnnnnnn. 204
20.1.5 How Windows Locates DLLs 20-5
202 WhentoUseaCustomDLLcccouon... 20-6
20.2.1 Sharing Between Applications 20-6
20.2.2 Customizing an Application for Different Markets ... 20-8
20.2.3 WindowsHooks, 20-9
2024 DeviceDriverscoviiiiiiniiinnnnnaan.. 20-9
20.2.5 CustomControlscovviiiiiineennnnnn.. 20-10
20.2.6 Project Managementc0iieunn.nn. 20-18
203 CreatingaDLLcciiiiiiniiiiiinannannn.. 20-19
20.3.1 Creating the C-Language Source File 20-19
20.3.2 Creating the Module-Definition File 20-25
20.3.3 Creatingthe MakeFile 20-27
20.4 Application Accessto DLLCode 20-30
20.4.1 Creating a Prototype for the Library Function 20-30
20.4.2 Importing the Library Function «... 20-30
20.5 Rules for Windows Object Ownership 20-33
20.6 A Sample Library: Selectooveiiiieennnnnnnnnnn. 20-34
20.6.1 CreatetheFunctions 20-35
20.6.2 Create the Initialization Routine 20-40
20.6.3 Createthe ExitRoutine........................ 20-40
20.6.4 Create the Module-Definition File 20-41
20.6.5 CreatethelncludeFile 20-41
20.6.6 CompileandLink 20-41
20.7 SUMMAIY v ttiettttiiee e iiee e ineinernnnnn 20-42

Chapter 21 Multiple Document Interface

21.1 The Structure of an MDI Application 21-1
21.2 Initializing an MDI Applicationcoovvunnnn... 21-3
21.2.1 Registering the Window Classes 21-3
2122 Creatingthe Windowscccvvvunn... 214
21.3 Writing the Main Message Loop 21-5
214 Writing the Frame Window Function 21-6

21.5 Writing the Child Window Function 21-6

Contents xvii

21.6 Associating Data with Child Windows 21-7
21.6.1 Storing Data in the Window Structure 21-7
21.6.2 Using Window Properties 21-7
21.7 Controlling Child Windowso, 21-8
21.7.1 Creating Child Windows 21-8
21.7.2 Destroying Child Windows 21-9
21.7.3 Activating and De-activating Child Windows 21-9
21.7.4 Arranging Child Windows onthe Screen 21-10
21.8 SUMIMAIYcovuriii ittt iieeiaeeaeninannnenns 21-10

Chapter 22 Dynamic Data Exchange

22.1 DataExchangeinWindowsooiiiiiian, 22-1
22.1.1 Clipboard Transferscovviiiiiiaan.. 22-2
22.1.2 Dynamic Link Libraries 22-2
22.1.3 Dynamic DataExchange 22-2
22.14 Usesfor WindowsDDE 22-3
22.1.5 DDE from the User’s Pointof View 22-3
222 DDECONCEPES . .vvintinnn e ennennenesnennannanns 22-4
22.2.1 Client, Server, and Conversation 22-4
22.2.2 Application, Topic,andItem 224
22.2.3 Permanent (“Hot” or “Warm”) DataLink 22-5
223 DDEMESSAZES «vvoveerertetnnetiteinteiittiieetaeeans 22-5
224 DDEMessageFlowcoiiiiiiiiiiiiiiiiinnenn, 22-6
22.4.1 Initiating a Conversationcovvunenn.. 22-7
2242 Transferinga SingleItem 22-9
22.4.3 Establishing a Permanent DataLink 22-13
22.4.4 Executing Commands in a Remote Application 22-19
22.4.5 Terminating a Conversation 22-22
22.5 Sample DDE Client and Server Applications 22-23

226 SUMMALY ...ttt ittt iaeneennanaannens 22-24

Tables

Table 8.1
Table 8.2
Table 8.3
Table 8.4
Table 8.5
Table 16.1
Table 16.2
Table 17.1
Table 20.1
Table 20.2

User Interface for Standard List Box 8-14
User Interface for LBS_MULTIPLESEL ListBox 8-16
User Interface for LBS_EXTENDEDSEL ListBox 8-17
User Interface for EditControl 8-24
User Interface for ScrollBar, 8-27
Segment Positions inthe GlobalHeap 16-3
Use of Expanded Memory 16-8
Values for the wMode Parameter 17-7
Uses of the Three Library Types 20-3

Windows SDK Import Libraries 20-31

Introduction

This introduction provides some background information that you should review
before you use this guide.

This introduction covers the following topics:

m Things you should know before you start

® The purpose and contents of this guide

m Tools you’ll need to create Windows applications

m Using the sample applications described in this guide
m Notational conventions used throughout this guide

m The manuals that come with the Microsofte Windows™ Software Develop-
ment Kit (SDK)

What Should You Know Before You Start?

To start using this guide, you will need the following:

m Experience using Windows and an understanding of the Windows user
interface.

Before starting any Windows application development, you should install
Windows version 3.0 on your computer and learn how to use it. Be sure to
learn the names, purposes, and operation of the various parts of a Windows
application (such as windows, dialog boxes, menus, controls, and scroll bars).
Because your own Windows applications will incorporate these features, it is
very important for you to understand them so that you can implement them
properly.

® An understanding of the Windows user-interface style guidelines.

One goal of Microsoft Windows is to provide a common user interface for all
applications. This ultimately helps the user by reducing the effort required to
learn the user interface of a Windows application; it helps you by clarifying
the choices you have to make when designing a user interface. To achieve

this goal, however, you must base your application’s user interface design on
the recommended application style guidelines described in the System Appli-
cation Architecture, Common User Access: Advanced Interface Design Guide.

m Experience writing C-language programs and using the standard C run-time
functions.

Xx Guide to Programming

The C programming language is the preferred development language for
Windows applications. Many of the programming features of Windows were
designed with the C programmer in mind. (Windows applications can also be
developed in Pascal and assembly language, but these languages present addi-
tional challenges that you typically bypass when writing applications in the C
language.)

About This Guide

This guide is intended to help the experienced C programmer make the transition
to writing applications that use the Microsoft Windows version 3.0 application
program interface. It explains how to use Windows functions, messages, and data
structures to carry out useful tasks common to all Windows applications, and il-
lustrates these explanations with sample applications that you can compile and
run with Windows version 3.0.

This guide consists of three parts, each of which contain several chapters.

Part 1, “Introduction to Writing Windows Applications,” gives an overview of
the Windows environment, and provides an in-depth look at a sample Windows
application. Part 1 consists of the following chapters:

m Chapter 1, “An Overview of the Windows Environment,” compares Windows
to the standard C environment, provides a brief overview of Windows, and de-
scribes the Windows programming model and the Windows application-
development process.

m Chapter 2, “A Generic Windows Application,” shows how to create a simple
Windows application called Generic. You’ll then use this application as a
basis for subsequent examples in this learning guide.

Part 2, “Programming Windows Applications,” explains basic Windows program-
ming tasks, such as creating menus, printing, and using the clipboard. Each chap-
ter covers a specific topic, and provides a sample application that illustrates that
topic. Part 2 consists of the following chapters:

®m Chapter 3, “Output to a Window,” introduces the graphics device interface
(GDI) and shows how to use GDI tools to create your own output.

= Chapter 4, “Keyboard and Mouse Input,” shows how to process input from
the mouse and keyboard.

® Chapter 5, “Icons,” shows how to create and display icons for your applica-
tions.

m Chapter 6, “The Cursor, the Mouse, and the Keyboard,” explains the purpose
of the cursor, the mouse, and the keyboard, and shows how to use them in
your applications.

Introduction xxi

Chapter 7, “Menus,” shows how to create menus for your applications and
how to process input from menus.

Chapter 8, “Controls,” explains how to create and use controls, such as push
buttons and list boxes.

Chapter 9, “Dialog Boxes,” explains how to create and use dialog boxes, and
how to fill them with controls.

Chapter 10, “File Input and Output,” explains the OpenFile function, as well
as rules about disk files.

Chapter 11, “Bitmaps,” shows how to create and display bitmaps.
Chapter 12, “Printing,” shows how to use a printer with Windows.

Chapter 13, “The Clipboard,” explains the clipboard and shows how to use it
in your applications.

Part 3, “Advanced Programming Topics,” introduces and explains some
advanced topics, such as memory management and Dynamic Data Exchange.
Each chapter covers a specific topic. Part 3 consists of the following chapters:

Chapter 14, “C and Assembly Language,” gives some guidelines for writing
C-language and assembly-language Windows applications.

Chapter 15, “Memory Management,” shows how to allocate global and local
memory.

Chapter 16, “More Memory Management,” provides a more in-depth look at
how your application can efficiently manage memory. This chapter also ex-
plains how Windows manages memory under different memory configura-
tions.

Chapter 17, “Print Settings,” explains how to tailor printer settings (such as
page size and orientation) to your application’s needs.

Chapter 18, “Fonts,” shows how to create and load fonts, and how to use
them in the TextOut function.

Chapter 19, “Color Palettes,” shows how to use Windows color palettes to
make the most effective use of color in your application.

Chapter 20, “Dynamic-Link Libraries,” explains how to create and use
Windows dynamic-link libraries.

Chapter 21, “Multiple Document Interface,” explains how to create an appli-
cation that uses the Windows multiple document interface (MDI) to let users
work with more than one document at a time.

Chapter 22, “Dynamic Data Exchange,” explains how to pass data from one
application to another using the message-based Dynamic Data Exchange pro-
tocol.

xxii Guide to Programming

What Tools Do You Need?

To build most Windows version 3.0 applications, you’ll need the following tools:

® Microsoft C Optimizing Compiler: CL

= Microsoft Segmented-Executable Linker: LINK
® Microsoft Windows Resource Compiler: RC

® Microsoft Windows SDKPaint: SDKPAINT

® Microsoft Windows Dialog Editor: DIALOG

To build Windows libraries and font resource files, you need the following addi-
tional tools:

m Microsoft Macro Assembler: MASM
® Microsoft Windows Font Editor: FONTEDIT

The following tools may also be useful in building and debugging Windows
applications:

®m Microsoft Program Maintenance Utility: MAKE

® Microsoft Symbolic Debugger: SYMDEB

® Microsoft CodeViewe for Windows: CVW

® Microsoft Windows Profiler: PROFILER

® Microsoft Windows Swap: SWAP

B Microsoft Windows Heap Walker: HEAPWALK

® Microsoft Windows Spy: SPY

Most of these tools are pr0\"ided in the Microsoft Windows Software Develop-

ment Kit version 3.0. The C Compiler, the linker, the Macro Assembler, and the
Program Maintenance Utility are not. All are described more fully in Tools.

For a list of Windows 3.0 software and hardware requirements, see the
Installation and Update Guide.

Introduction xxiii

Using the Sample Applications

The sample applications in this guide are written in the C programming language
and conform to the user-interface style recommended by Microsoft for Windows
applications.

The source files for all sample applications are on the Sample Source Code disk
that comes with the SDK. It’s a good idea to review the sample application
sources while reading the corresponding descriptions in this guide. For your con-
venience, the subdirectories containing the sample sources are named by chapter.
You can also use the sources as a basis for your own applications.

Special Terms

This guide is written for you, the Windows application developer. The word
“you” can refer either to you as a developer, or, sometimes, to your application.
For example:

“You create icons, cursors, and bitmaps using the SDKPaint editor.”

“You can display text using the TextOut function.”

“Your application will receive a WM_PAINT message when it needs to re-
fresh its client area.”

Throughout this document, the term “user” refers not to you, the application
developer, but to the person who will eventually use the applications you write.
For example:

“When the user selects the About menu item, your application displays the
About dialog box.”

“You can display a checkmark next to a menu item to indicate that the user
has selected that item.”

Xxxiv Guide to Programming

Document Conventions

Throughout this manual, the term “DOS” refers to both MS-DOS® and
PC-DOS, except when noting features that are unique to one or the other.

The following document conventions are used throughout this manual:

Convention

Bold text

O

Italic text

Monospaced type

BEGIN

END

Description of Convention

Bold letters indicate a specific term or punctua-
tion mark intended to be used literally:
language key words or functions (such as
EXETYPE or CreateWindow), DOS com-
mands, and command-line options (such as
/Zi). You must type these terms and punctua-
tion marks exactly as shown. However, the use
of uppercase or lowercase letters is not always
significant. For instance, you can invoke the
linker by typing either LINK, link, or Link at
the DOS prompt.

In syntax statements, parentheses enclose one
or more parameters that you pass to a function.

Italic text indicates a placeholder; you are ex-
pected to provide the actual value. For
example, the following syntax for the SetCur-
sorPos function indicates that you must
substitute values for the X and Y coordinates,
separated by a comma:

SetCursorPos(X, Y)

Code examples are displayed in a nonpropor-
tional typeface.

A vertical ellipsis in a program example indi-
cates that a portion of the program is omitted.

Introduction xxv

L

Convention

[l

69

{)

SMALL CAPITAL LETTERS

Description of Convention

An ellipsis following an item indicates that
more items having the same form may appear.
In the following example, the horizontal ellip-
sis indicates that you can specify more than
one breakaddress for the g command:

g [=startaddress]| [breakaddress]]...

Double brackets enclose optional fields or para-
meters in command lines and syntax
statements. In the following example, option
and executable-file are optional parameters of
the RC command:

RC [[option]| filename [executable-file]]

A vertical bar indicates that you may enter one
of the entries shown on either side of the bar.
The following command-line syntax illustrates
the use of a vertical bar:

DB [[address | range]]

The bar indicates that following the DB
(Dump Bytes) command, you can specify
either an address or a range.

Quotation marks set off terms defined in the
text.

Curly braces indicate that you must specify
one of the enclosed items.

Small capital letters indicate the names of keys
and key sequences, such as:

ALT + SPACEBAR

xxvi Guide to Programming

Microsoft Windows Software Development Kit Documentation Set

Throughout this documentation set “SDK” refers specifically to the Microsoft
Windows Software Development Kit and its contents. The SDK includes the fol-

lowing manuals:

Title

Installation and Up-
date Guide

Guide to Programming

Tools

Reference

System Application
Architecture, Common
User Access:
Advanced Interface
Design Guide

Contents

Provides an orientation to the SDK, explains how to
install the SDK software, and highlights the changes
for version 3.0.

Explains how to write Windows applications, and
provides sample applications that you can use as
templates for writing your own programs. The
Guide to Programming also addresses some
advanced Windows programming topics.

Explains how to use the software-development tools
you’ll need to build Windows applications, such as
debuggers and specialized SDK editors.

Is a comprehensive guide to all the details of the
Microsoft Windows application program interface
(API). The Reference lists in alphabetical order all
the current functions, messages, and data structures
of the API, and provides extensive overviews on
how to use the APL

Provides guidelines and recommendations for writ-
ing programs that appear and act consistently with
other Microsoft Windows applications.

Part

Introduction to
Writing Windows

Applications

Although they are usually written in the C language, Windows applications are,
in many ways, very different from standard C programs. This is because, to run
successfully in the Windows environment, an application must cooperate with
Windows and other applications; it must yield control to Windows whenever
possible, and must share system resources with Windows and other applications.

Part 1 introduces the Windows environment, and compares it to the environment
in which standard C programs normally run. It also explains the basic structure
of a Windows application, and describes a simple application that illustrates this
structure.

After reading the chapters in Part 1, you should have a basic understanding of
the Windows environment and the structure of a typical Windows application.

e

CHAPTERS

1 An Overview of the Windows Environment
2 A Generic Windows Application

Chapter || An Overview of the
1 Windows Environment

Microsoft Windows version 3.0 has many features that the standard DOS en-
vironment does not. Because of this, Windows applications are in some ways
more complex than standard DOS programs.

This chapter covers the following topics:

® A comparison of Windows applications and standard DOS applications

m Features that the Windows environment offers, and the impact these features
have on the way you develop and write applications

® The Windows programming model

® The process you use to develop Windows applications

1.1 Microsoft Windows and DOS: a Comparison

Microsoft Windows has many features that the standard DOS environment does
not. For this reason, Windows applications may, at first, seem more complex
than standard DOS programs. This is understandable when you consider some of
the additional features that Windows offers. These include:

® A graphical user interface featuring windows, menus, dialog boxes, and con-
trols for applications

® Queued input

® Device-independent graphics

® Multitasking

® Data interchange between applications

When writing applications for the DOS environment, most C programmers use

the standard C run-time library to carry out a program’s input, output, memory

management, and other activities. The C run-time library assumes a standard

operating environment consisting of a character-based terminal for user input and
output, and exclusive access to system memory as well as to the input and output

1-2 Guide to Programming

devices of the computer. In Windows, these assumptions are no longer valid.
Windows applications share the computer’s resources, including the CPU, with
other applications. Windows applications interact with the user through a
graphics-based display, a keyboard, and a mouse.

The following sections describe some of the major differences between standard
DOS applications and Windows applications.

1.1.1 The User Interface

One of the principal design goals of Windows is to provide visual access to most,
if not all, applications at the same time. In a multitasking environment, it is im-
portant to give all applications some portion of the screen; this ensures that the
user can interact with all applications. Some systems do this by giving one pro-
gram full use of the screen while other programs wait in the background. In
Windows, every application has access to some part of the screen at all times.

An application shares the display with other applications by using a “window”
for interaction with the user. Technically, a window is little more than a rectangu-
lar portion of the system display that the system grants use of to an application.
In reality, a window is a combination of useful visual devices, such as menus,
controls, and scroll bars, that the user uses to direct the actions of the application.

In the standard DOS environment, the system automatically prepares the system
display for your application. Typically, it does so by passing a file handle to the
application. You can then use that file handle to send output to the system dis-
play using conventional C run-time routines or DOS system calls. In Windows,
you must create your own window before performing any output or receiving any
input. Once you create a window, Windows provides a great deal of information
about what the user is doing with the window. Windows automatically performs
many of the tasks the user requests, such as moving and sizing the window.

Another advantage to developing in the Windows environment is that, in contrast
to a standard C program, which has access to a single screen “surface,” a
Windows application can create and use any number of overlapping windows to
display information in any number of ways. Windows manages the screen for
you, controls the placement and display of windows, and ensures that no two
applications attempt to access the same part of the system display at the same
time.

1.1.2 Queued Input

One of the biggest differences between Windows applications and standard C
programs is the way they receive user input.

An Overview of the Windows Environment 1-3

In the DOS environment, a program reads from the keyboard by making an expli-
cit call to a function, such as getchar. The function typically waits until the user
presses a key before returning the character code to the program. In contrast, in
the Windows environment, Windows receives all input from the keyboard,
mouse, and timer, and places the input in the appropriate application’s “message
queue.” When the application is ready to retrieve input, it simply reads the next
input message from its message queue.

In the standard DOS environment, input is typically in the form of 8-bit
characters from the keyboard. The standard input functions, getchar and fscanf,
read characters from the keyboard and return ASCII or other codes correspond-
ing to the keys pressed. A program can also intercept interrupts from input dev-
ices such as the mouse and timer to use information from those devices as input.

In Windows, an application receives input in the form of “input messages” that
Windows sends it. A Windows input message contains information that far
exceeds the type of input information available in the standard DOS environ-
ment. It specifies the system time, the position of the mouse, the state of the key-
board, the scan code of the key (if a key is pressed), the mouse button pressed, as
well as the device generating the message. For example, there are two keyboard
messages, WM_KEYDOWN and WM_KEYUP, that correspond to the press and
release of a specific key. With each keyboard message, Windows provides a
device-independent virtual-key code that identifies the key, the device-dependent
scan code generated by the keyboard, as well as the status of other keys on the
keyboard, such as SHIFT, CONTROL, and NUMLOCK. Keyboard, mouse, and timer
messages all have the same format and are all processed in the same manner.

1.1.3 Device-Independent Graphics

In Windows, you have access to a rich set of device-independent graphics opera-
tions. This means your application can easily draw lines, rectangles, circles, and
complex regions. Because Windows provides device independence, you can use
the same functions to draw a circle on a dot-matrix printer or a high-resolution
graphics display.

Windows requires “device drivers” to convert graphics output requests to output
for a printer, plotter, display, or other output device. A device driver is a special
executable library that an application can load and connect to a specific output
device and port. A “device context” represents the device driver, the output
device, and perhaps the communications port. Your application carries out
graphics operations within the “context” of a specific device.

1-4 Guide to Programming

1.1.4 Multitasking

Windows is a multitasking system: more than one application can run at a time.
In the standard DOS environment, there are no particular provisions for multi-
tasking. Programs written for the DOS environment typically assume that they
have exclusive control of all resources in the computer, including the input and
output devices, memory, the system display, and even the CPU itself. In
Windows, however, applications must share these valuable resources with all
other applications that are currently running. For this reason, Windows carefully
controls these resources, and requires Windows applications to use a specific pro-
gram interface that guarantees Windows’ control of those resources.

For example, in the standard DOS environment, a program has access to all of
memory that has not been taken up by the system, by the program, or by
terminate-but-stay-resident (TSR) programs. This means that programs are free
to use all of available memory for whatever they like and may access memory by
whatever method they like.

In Windows, memory is a shared resource. Since more than one application can
be running at the same time, each application must cooperatively share memory
to avoid exhausting the resource. Applications may allocate what they need from
system memory. Windows provides two sources of memory: global memory, for
large allocations, and local memory, for small allocations. To make the most effi-
cient use of memory, Windows often moves or even discards memory blocks.
This means you cannot assume that objects to which you have assigned a
memory location remain where you put them. If there are several applications
running, Windows may move and discard memory blocks often.

Another example of a shared resource is the system display. In the standard DOS
environment, the system typically grants your application exclusive use of the
system display. This means you can use the display in any manner you like, from
changing the color of text and background, to changing the video mode from text
to graphics. In Windows, your application must share the system display with
other applications, so it must not take control of the display.

An Overview of the Windows Environment 1-5

1.2 The Windows Programming Model

Most Windows applications use the following elements to interact with the user:

® Windows
B Menus
® Dialog boxes

® The message loop

The rest of this section describes these elements in detail.

1.2.1 Windows

A window is the primary input and output device of any Windows application. It
is an application’s only access to the system display. A window is a combination
of a title bar, a menu bar, scroll bars, borders, and other features that occupy a
rectangle on the system display. You specify the features you want for a window
when you create the window. Windows then draws and manages the window.
Figure 1.1 shows the main features of a window:

Control menu Title bar Minimize box
I_ Control-menu box l- I. Menu bar [Maximize box

F

Ip
| Move 1l Scroll box
> Size
Minimize

Maximize
Close Alt+F4
Switch To... Ctrl+Esc

o B
- 7

Window border I Scroll bar
Figure 1.1 Window Features

1-6 Guide to Programming

1.2.2 Menus

Although an application creates a window and technically has exclusive rights to
it, the management of the window is actually a collaborative effort between the
application and Windows. Windows maintains the position and appearance of the
window, manages standard window features such as the border, scroll bars, and
title, and carries out many tasks initiated by the user that directly affect the
window. The application maintains everything else about the window. In particu-
lar, the application is responsible for maintaining the “client area” of the window
(the portion within the window borders). The application has complete control
over the appearance of its window’s client area.

To manage this collaborative effort, Windows advises each window of changes
that might affect it. Because of this, every window must have a corresponding
“window function.” The window function receives window-management mes-
sages that it must respond to appropriately. Window-management messages
either specify actions for the function to carry out, or are requests for information
from the function.

Menus are the principal means of user input in a Windows application. A menu
is a list of commands that the user can view and choose from. When you create
an application, you supply the menu and command names. Windows displays
and manages the menus for you, and sends a message to the window function
when the user makes a choice. The message is the application’s signal to carry
out the command.

1.2.3 Dialog Boxes

A dialog box is a temporary window that you can display to let the user supply
more information for a command. A dialog box contains one or more “controls.”
A control is a small window that has a very simple input or output function. For
example, an “edit control” is a simple window that lets the user enter and edit
text. The controls in a dialog box let the user supply filenames, choose options,
and otherwise direct the action of the command.

An Overview of the Windows Environment 1-7

1.2.4 The Message Loop

Since your application receives input through an application queue, the chief fea-
ture of any Windows application is the “message loop.” The message loop re-
trieves input messages from the application queue and dispatches them to the
appropriate windows.

Figure 1.2 shows how Windows and an application collaborate to process key-
board input messages. Windows receives keyboard input when the user presses
and releases a key. Windows copies the keyboard messages from the system
queue to the application queue. The message loop retrieves the keyboard mes-
sages, translates them into an ANSI character message, WM_CHAR, and dis-
patches the WM_CHAR message, as well as the keyboard messages, to the
appropriate window function. The window function then uses the TextOut func-
tion to display the character in the client area of the window.

Windows

User presses 71 »

the (@ key System queue

Application

WinMain function

- Message loop

| Application queue

-

Windows receiv%s the ,
message from the) <
application’s message < z

loop and dispatches
message to the

application window — 31

PP Window
TextOut function

In response to the +———(2Z} <

window function’s
TextOut request,

Windows outputs a Application
"Z" to the application z window
window > (Z—>

Figure 1.2 Processing Keyhoard Input

1-8 Guide to Programming

H O ——

Windows can receive and distribute input messages for several applications at
once. As shown in Figure 1.3, Windows collects all input, in the form of mes-
sages, in its system queue. It then copies each input message to the appropriate
application queue. The message loop in each application retrieves messages and
dispatches them, through Windows, to each application’s appropriate window

function.
Windows
Application A
Hardware [, System queue
input L

. WinMain function

y
l Application queue A

v A

Message loop

Y A

v v
Window || Window
function 1||function 2

Application B

WinMain function
v

Application queue B

Y A
vV A

Message loop

v v
Window Window
function 1||function 2

Figure 1.3 Processing Input for Two Applications

In contrast to keyboard input messages, which the application must retrieve from
its message queue, Windows sends window-management messages directly to
the appropriate window function. Figure 1.4 shows how Windows sends window-
management messages directly to a window function. After Windows carries out
a request to destroy a window, it sends a WM_DESTROY message directly to
the window function, bypassing the application queue. The window function
must then signal the main function that the window is destroyed and the applica-
tion should terminate. It does this by copying a WM_QUIT message into the
application queue by using the PostQuitMessage function.

An Overview of the Windows Environment 1-9

Windows

. Application
window

User selects —y Windows carries out —

"Exit" from the request to destroy
application the application window
menu

Windows then sends Application

a WM_DESTROY
message directly to
the window function —fWM_DESTROY4>| window

function
L1

WM_QUIT

» / WinMain function

>WM_QUIT- > Message Ioopg

Application queue

v

Message loop and
WinMain function
terminate on receiving
WM_QUIT message

Figure 1.4 Processing Window-Management Messages

When the message loop retrieves the WM_QUIT message, the loop terminates
and the main function exits.

1.3 The Windows Libraries

Windows functions, like C run-time functions, are defined in libraries. The
Windows libraries, unlike C run-time libraries, are special dynamic-link libraries
(DLLs) that the system links with your application when it loads your applica-

tion. DLLs are an important feature of Windows because they minimize the
amount of code each application requires.

1-10 Guide to Programming

Windows consists of the following three main libraries:

Library Description

User Provides window management. This library manages the over-
all Windows environment, as well as your application’s
windows.

Kernel Provides system services, such as multitasking, memory man-

agement, and resource management.

GDI Provides the graphics device interface.

1.4 Building a Windows Application
To build a Windows application, follow these steps:
1. Create C-language or assembly-language source files that contain the
WinMain function, window functions, and other application code.

2. Use the resource editors (SDKPaint, the Dialog Editor, and the Font Editor)
to create any cursor, icon, bitmap, dialog, and font resources the application
will need.

3. Create a resource script (.RC) file that defines all the application’s resources.
The resource script file lists and names the resources you created in the pre-
ceding step. It also defines menus, dialog boxes, and other resources.

4. Create the module-definition (.DEF) file, which defines the attributes of the
application modules, such as segment attributes, stack size, and heap size.

5. Compile and link all C-language sources; assemble all assembly-language
sources.

6. Use the Resource Compiler to compile the resource script file and add it to
the executable file.

Figure 1.5 shows the steps required to build a Windows application.

An Overview of the Windows Environment 1-11

Create the source files. |-C] [H] ASM
FONTEDIT
Create the resource files.
[ico|[.cur]||[.BmMP| |.DLG | FNT

Create the resource A 4
script file. [.RC
Compile or assemble oL \
the source files. W

| .OBJ | [.oBJ |

Create the module- o
definition file. C libraries

Windows libraries

Link the source files
with Windows and C
run-time libraries.

Compile the resources.

Add the resources to
the executable file.

The result is a
Windows application. -EXE

Figure 1.5 Building a Windows Application L02_05

1-12 Guide to Programming

1.5 Software Development Tools

To create a Windows application, you use many new development tools, as well
as some familiar tools with new options. This section briefly describes the tools
you will use.

1.5.1 C GCompiler

To compile Windows applications, you use the Microsoft C Compiler, just as
you do for standard C programs. You can use many of the same CL command-
line options you use for standard C programs. However, Windows also requires
two special options: -Gw and —Zp. The -Gw option adds the Windows prolog
and epilog code to each function; this code is required for the application to run
in the Windows environment. The —Zp option packs structures, ensuring that the
structures used in your application are the same size as the corresponding struc-
tures used by Windows. The following shows a typical CL command for compil-
ing a small-model Windows application:

CL -c -AS -Gsw -0s -Zdp TEST.C

The —c option instructs the compiler to perform only the C compilation, but not
the linking. The —¢ option is necessary if you wish to compile multiple C source
files separately.

1.5.2 The Linker

You use the linker supplied with the Microsoft C Compiler (LINK) to produce
Windows-format executable files. Unlike normal C applications, Windows appli-
cations require a module-definition (.DEF) file. This file:

m Defines a name for the application.
® Marks the application as a Windows application.

m Specifies certain attributes of the application, such as whether a data segment
is moveable in memory.

m Lists and names any callback functions in the application.

The following is an example of a module-definition file:

NAME Generic ; application's module name
DESCRIPTION 'Sample Microsoft Windows Application'

EXETYPE WINDOWS ; Required for all Windows applications

An Overview of the Windows Environment 1-13

STUB 'WINSTUB.EXE' ; The "stub" displays an error message if
; application is run without Windows

CODE PRELOAD MOVEABLE ; code can be moved in memory
;DATA must be MULTIPLE if program can be invoked more than once
DATA MOVEABLE MULTIPLE

HEAPSIZE 1024
STACKSIZE 5120 ; recommended minimum for Windows applications

; A11 functions that will be called by any Windows routine
; MUST be exported.

EXPORTS
MainWndProc @1 ; name of window-processing function
AboutDlgProc @2 ; name of About processing function

To link a Windows application, you specify the name of the object files created
by the compiler, the name of the Windows import library, the name of the mod-
ule-definition file, and other options and files. The following example is a typical
LINK command:

LINK /NOD GENERIC, , , SLIBCEW LIBW, GENERIC.DEF

For more information on LINK and the module-definition file, see Tools.

1.5.3 The SDK Resource Editors

You use the Windows resource editors to create application resources such as cur-
sors, icons, and bitmaps. You must then list these resources in the application’s
resource script file. The resource editors are included in the Microsoft Windows
Software Development Kit (SDK). They are:

® SDKPaint (SDKPAINT), which creates icons, cursors, and bitmaps

® The Dialog Editor (DIALOG), which creates dialog-box descriptions
® The Font Editor (FONTEDIT), which creates font files

Because these editors are Windows applications, you run them within the

Windows environment. For more information on the Windows resource editors,
see Tools.

1-14 Guide to Programming

1.5.4 The Resource Compiler

Most Windows applications use a variety of resources, such as icons, cursors,
menus, and dialog boxes. You define these resources in a file called a “resource
script file,” which always has the filename extension .RC. After creating the
resource script (.RC) file, you use the Resource Compiler (RC) to compile the
.RC file and add the compiled resources to the application’s executable file.
When the application runs, it can load and use the resources from the executable
file.

The following is an example of a resource script file that defines two resources, a
cursor and an icon:

Bullseye CURSOR BULLSEYE.CUR
Generic ICON GENERIC.ICO

The first statement defines a cursor resource by naming it (Bullseye), declaring
its type (CURSOR), and specifing the file that contains the actual cursor image
(BULLSEYE.CUR). The second statement does the same for an icon resource.

To compile a resource script file and add the compiled resources to an executable
file, use the RC command. The following example shows a typical RC com-
mand:

RC GENERIC.RC

For a description of how to use the Resource Compiler, see Tools. For a descrip-
tion of the resource statements that make up a resource script file, see the
Reference, Volume 2.

1.5.5 Debugging and Optimization Tools

The SDK includes several tools you can use to debug your Windows application
and to optimize its peformance:

m CodeView for Windows (CVW) lets you debug Windows applications while
running with Windows in standard mode or 386 enhanced mode. CVW lets
you set breakpoints, view source-level code, and display symbolic informa-
tion while debugging Windows applications.

m The Symbolic Debugger (SYMDEB) is a debugging tool you can use to
debug Windows applications while running in real mode.

m The Spy (SPY) message watcher is a Windows application that lets you moni-
tor the messages that Windows sends to an application. This can be particu-
larly useful when debugging.

An Overview of the Windows Environment 1-15

= Profiler PROFILER) lets you find out the relative times it takes your appli-
cation’s code segments to execute; this lets you fine-tune your application’s
performance.

m The Swap (SWAP) swapping analyzer lets you analyze and fine-tune your
application’s memory-swapping behavior.

® Heap Walker (HEAPWALK) is a Windows application that lets you ex-
amine the contents of the local or global memory heap.

For more information about these tools, see Tools.

1.5.6 The Program Maintainer

The MAKE program is a program maintainer that updates programs by keeping
track of the dates of its source files. MAKE is included with Microsoft C version
5.1. (NMAKE is a similar program that comes with version 6.0 of Microsoft C.)
Both programs work equally well with Windows; the one you use will depend on
the version of Microsoft C you have.

Although MAKE and NMAKE come with Microsoft C, not with the SDK, they
are especially important for Windows applications because of the number of files
required to create a Windows application. These program maintainers use a text
file, called a “make file,” that contains a list of the commands and files needed to
build a Windows application. The commands compile and link the various files.
The program maintainer executes the commands only if the files named in those
commands have changed. This saves time if, for instance, you have made only a
minor change to a single file.

Make files for MAKE and NMAKE are almost identical; the only difference is
that NMAKE requires an additional line at the beginning.

The following example shows the content of a typical make file for a Windows
application:

The following line allows NMAKE to use this file as well
all: generic.exe

Update the resources if necessary

GENERIC.RES: GENERIC.RC GENERIC.H
RC -R GENERIC.RC

Update the object file if necessary

GENERIC.0BJ: GENERIC.C GENERIC.H
CL -AS -c -DLINT_ARGS -Gsw -0Oat -W2 -Zped GENERIC.C

1-16 Guide to Programming

Update the executable file if necessary; if so, add the resources
to it.

GENERIC.EXE: GENERIC.O0BJ GENERIC.DEF
LINK /NOD GENERIC, , , SLIBCEW LIBW, GENERIC.DEF
MAPSYM GENERIC
RC GENERIC.RES

If the .RES file is new and the .EXE file is not,

compile only the resources. Note that the .RC file can
be updated without having to either recompile or

relink the file.

GENERIC.EXE: GENERIC.RES
RC GENERIC.RES

Typically, make files have the same name as the applications they build, al-
though any name is allowed. The following example runs MAKE using the com-
mands in the file GENERIC:

MAKE GENERIC

For more information about the MAKE program, see the documentation pro-
vided with the Microsoft C Optimizing Compiler.

1.6 Tips for Writing Windows Applications

There are some programming practices that work well for standard C or
assembly-language applications, but will not work in the Windows environment.
Chapter 14, “C and Assembly Language,” provides detailed information on using
those programming languages to write Windows applications.

In general, when writing Windows applications, remember the following rules:

®m Do not take exclusive control of the CPU—it is a shared resource. Although
Windows is a multitasking system, it is non-preemptive. This means it cannot
take control back from an application until the application releases it. A
cooperative application carefully manages access to the CPU and gives other
applications ample opportunity to execute.

= Do not attempt to directly access memory or hardware devices such as the
keyboard, mouse, timer, display, and serial and parallel ports. Windows re-
quires absolute control of these resources to ensure equal, uninterrupted
access for all applications that are running.

An Overview of the Windows Environment 1-17

®m Within your application, all functions that Windows can call must be defined
with the PASCAL key word; this ensures that the function accesses argu-
ments correctly. Functions that Windows can call are the WinMain function,
callback functions, and window functions.

m Every application must have a WinMain function. This function is the entry
point, or starting point, for the application. It contains statements and
Windows function calls that create windows and read and dispatch input in-
tended for the application. The function definition has the following form:

int PASCAL WinMain(hInst,hPrevInst,ipCmdLine,nCmdShow)
HANDLE hlInst;

HANDLE hPrevInst;

LPSTR 1pCmdLine;

int nCmdShow;

{

}

The WinMain function must be declared with the PASCAL key word. Al-
though Windows calls the function directly, WinMain must not be defined
with the FAR key word, since it is called from linked-in start-up code.

®m When using Windows functions, be sure to check the return values. It’s not a
good idea to ignore these return values, since unusual conditions sometimes
occur when a function fails.

m Do not use C run-time console input and output functions, such as getchar,
putchar, scanf, and printf.

m Do not use C run-time file input and output functions to access serial and par-
allel ports. Instead, use the communications functions, which are described in
detail in the Reference, Volume 1.

® You can use the C run-time file input and output functions to access disk
files. In particular, use the Windows OpenFile function and the low-level, C
run-time input and output functions. Although you can use the C run-time
stream input and output functions, you do not get the advantages that Open-
File provides.

® You can use the C run-time memory-management functions malloc, calloc,
realloc, and free, but be aware that Windows translates these functions to its
own local-heap functions, LocalAlloc, LocalReAlloc, and LocalFree. Since
local-heap functions don’t always operate exactly like C run-time memory-
management functions, you may get unexpected results.

1-18 Guide to Programming

1.7 Summary

This chapter provided an overview of the Windows environment, and compared
Windows applications with standard C applications. For additional information
about Windows programming concepts, see the following:

Topic Reference

The message loop Guide to Programming: Chapter 2, “A
Generic Windows Application”

A simple Windows Guide to Programming: Chapter 2, “A

application Generic Windows Application”

Menus Guide to Programming: Chapter 7, “Menus”

Dialog boxes Guide to Programming: Chapter 9, “Dialog
Boxes”

Using C run-time routines Guide to Programming: Chapter 14, “C and

and assembly language in Assembly Language”

Windows applications

Windows functions and Reference, Volume 1

messages

Software development tools Tools

Chapter | A Generic Windows
2 | Application

This chapter explains how to create a simple Microsoft Windows application
called Generic, which demonstrates the principles explained in Chapter 1, “An
Overview of the Windows Environment.”

This chapter covers the following topics:

The essential parts of a Windows application
Initializing a Windows application

Writing the message loop

Terminating an application

The basic steps needed to build a Windows application

The Generic application will be used as basic code for all sample applications in
Part 2 of this guide. (The source files for Generic and the other sample applica-
tions are included on the SDK Sample Source Code disk.)

2.1 The Generic Application

Generic is a standard Windows application; that is, it meets the recommendations

for user-interface style given in the System Application Architecture, Common
User Access: Advanced Interface Design Guide. Generic has a main window, a

border, an application menu, and maximize and minimize boxes, but no other fea-

tures. The application menu includes a Help menu with an About command,
which, when chosen by the user, displays an About dialog box describing

Generic. The completed Generic, with an About dialog box, looks like Figure 2.1
when displayed:

2-2 Guide to Programming
]}

_ Help menu _ About dialog box

Microsoft Windows |
Generic Application

Help

Version 3.0

Figure 2.1 Generic: A Template for Writing Windows Applications

Generic is important not for what it can do, but for what it provides: a template
for writing Windows applications. Building it helps you understand how
Windows applications are put together and how they work.

2.2 A Windows Application

A Windows application is any application that is specifically written to run with
Windows and that uses the Windows application program interface (API) to
carry out its tasks. A Windows application has the following basic components:

® A main function named WinMain

m A window function

The WinMain function is the entry point for the application and is similar to the
main function used in the standard C environment. It is always named WinMain.

A window function is something new. It is a “callback function” — a function
within your application that Windows calls. Your application never calls its
window functions directly. Instead, it waits for Windows to call the window func-
tion with requests to carry out specific tasks or to return information.

2.3 The WinMain Function

Much like the main function in standard C programs, the WinMain function is
the entry point for a Windows application. Every Windows application must
have a WinMain function; no Windows application can run without it. In most
Windows applications, the WinMain function does the following:

A Generic Windows Application 2-3

® (Calls initialization functions that register window classes, create windows,
and perform any other necessary initializations

®m Enters a message loop to process messages from the application queue

® Terminates the application when the message loop retrieves a WM_QUIT
message

The WinMain function has the following form:

int PASCAL WinMain(hInstance, hPrevInstance, 1pCmdLine, nCmdShow)

HANDLE hInstance; /* current instance */
HANDLE hPreviInstance; /* previous instance */
LPSTR 1pCmdLine; /* command line */
int nCmdShow; /* whether to show window or icon */

{
}

The WinMain function requires the PASCAL calling convention.

When the user starts an application, Windows passes the following four parame-
ters to the application’s WinMain function:

Parameter Value Windows Passes to Application
hinstance The instance handle of the application.
hPrevinstance The handle of another instance of the application, if one

is running. If no other instances of this application are
running, Windows sets this parameter to NULL.

IpCmdLine A long pointer to a null-terminated command line.

nCmdShow An integer value that specifies whether to display the
application’s window as a window or as an icon. The
application passes this value to the ShowWindow func-
tion when calling that function to display the
application’s main window.

For more information on handles, see Section 2.3.2, “Handles.” For more infor-
mation on the [pCmdLine parameter, see Section 2.3.11, “The Application
Command-Line Parameter.”

2.3.1 Data Types and Structures in Windows

The WinMain function uses several special data types to define its parameters.
For example, it uses the HANDLE data type to define the hlnstance and hPrev-
Instance parameters, and the LPSTR data type to define the [pCmdLine parame-
ter. In general, Windows uses many more data types than you would find in a
typical C program. Although the Windows data types are often equivalent to

2-4 Guide to Programming

familiar C data types, they are intended to be more descriptive and should help
you better understand the purpose of a given variable or parameter in an applica-
tion.

The Windows data types are defined in the WINDOWS.H include file. The
Windows include file is an ordinary C-language source file that contains defini-
tions for all the Windows special constants, variables, data structures, and func-
tions. To use these definitions, you must include the WINDOWS.H file in each
source file. Place the following line at the beginning of your source file:

##include "WINDOWS.H" /* Required for all Windows applications */

The following is a list of some of the more common Windows data types:

Type Meaning

WORD Specifies a 16-bit, unsigned integer.

LONG Specifies a 32-bit, signed integer.

HANDLE Identifies a 16-bit, unsigned integer to be used as a
handle.

HWND Identifies a 16-bit, unsigned integer to be used as a
handle to a window.

LPSTR Specifies a 32-bit pointer to a CHAR type.

FARPROC Specifies a 32-bit pointer to a function.

The following is a list of some commonly used structures:

Structure Description

MSG Defines the fields of an input message.

WNDCLASS Defines a window class.

PAINTSTRUCT Defines a paint structure used to draw within a
window.

RECT Defines a rectangle.

See the Reference, Volume 2, for a complete listing and description of Windows
data types and structures.

2.3.2 Handles

The WinMain function has two parameters, #Previnstance and hinstance, that
are called “handles.” A handle is a unique integer that Windows uses to identify
an object created or used by an application. Windows uses a wide variety of han-

A Generic Windows Application 2-5

2.3.3 Instances

dles, identifying objects such as application instances, windows, menus, controls,
allocated memory, output devices, files, GDI pens and brushes, to name a few.

Most handles are index values for internal tables. Windows uses handle indexes
to access the information stored in the table. Typically, your application has
access only to the handle, and not to the data. When you need to examine or
change the data, you supply the handle and Windows does the rest. This is one
way that Windows protects data in its multitasking environment.

Not only can you run more than one application at a time in Windows, you can
also run more than one copy, or “instance” of the same application at a time. To
distinguish one instance from another, Windows supplies a unique “instance
handle” each time it calls the WinMain function to start the application. An in-
stance is a separately executing copy of an application, and an instance handle is
an integer that uniquely identifies an instance.

In some multitasking systems, if you run multiple instances of the same applica-
tion, the system loads a fresh copy of the application’s code and data into
memory and executes it. In Windows, when you start a new instance of the appli-
cation, only the data for the application is loaded. Windows uses the same code
for all instances of the application. This saves as much space as possible for other
applications and for data. However, this method requires that the code segments
of your application remain unchanged for the duration of the application. This
means that you must not store data in a code segment or change the code while
the program is running.

For most Windows applications, the first instance has a special role. Many of the
resources an application creates, such as window classes, are generally available
to all applications. Consequently, only the first instance of an application creates
these resources. All subsequent instances may use the resources without creating
them. To let you determine which is the first instance, Windows sets the #Prev-
Instance parameter of WinMain to NULL if there are no previous instances. The
following example shows how to check that previous instance does not exist:

int PASCAL WinMain(hInstance, hPrevInstance, 1pCmdLine, nCmdShow)

HANDLE hInstance; /* current instance*/

HANDLE hPrevInstance; /* previous instance*/

LPSTR 1pCmdLine; /* command line */

int nCmdShow; /* whether to show window or icon */

{
if (!hPrevInstance)

}

To keep the user from starting more than one instance of your application, check
the hPrevinstance parameter when the application starts; return to Windows

2-6 Guide to Programming

immediately if the parameter is not NULL. The following example shows how to
do this:

if (hPrevinstance)
return (NULL);

2.3.4 Registering the Window Class

Before you can create any window, you must have a “window class.” A window
class is a template that defines the attributes of a window, such as the shape of
the window’s cursor and the name of the window’s menu. The window class also
specifies the window function that processes messages for all windows in the
class. Although Windows provides some predefined window classes, most appli-
cations define their own window classes in order to control every aspect of the
way their windows operate.

You must register a window class before you can create a window that belongs to
that class. You register a window class by filling a WNDCLASS structure with
information about the class, and passing it as a parameter to the RegisterClass
function.

Filling the WNDCLASS Structure

The WNDCLASS provides information to Windows about the name, attributes,
resources, and window function for a window class. The WNDCLASS data
structure contains the following fields:

Field Description

IpszClassName Points to the name of the window class. A window
class name must be unique; that is, different applica-
tions must use different class names.

hInstance Specifies the application instance that is registering
the class.

IpfnWndProc Points to the window function used to carry out
work on the window.

style Specifies the class styles, such as automatic redraw-
ing of the window when moved or sized.

hbrBackground Specifies the brush used to paint the window back-
ground.

hCursor Specifies the cursor used in the window.

hlcon Specifies the icon used to represent a minimized
window.

IpszMenuName Points to the resource name of a menu.

A Generic Windows Application 2-7

Field Description

cbClsExtra Specifies the number of extra bytes to allocate for
this class structure.

cIlWndExtra Specifies the number of extra bytes to allocate for all
the window structures created with this class.

See the Reference, Volume 2, for more information about these fields.

Some fields, such as IpszClassName, hInstance, and IpfnWndProc, must be as-
signed values. Other fields can be set to NULL. When these fields are set to
NULL, Windows uses a default attribute for windows created using the class.
The following example shows how to fill a window structure:

BOOL InitApplication(hInstance)
HANDLE hInstance; /* current instance */

{

© WNDCLASS wc;

/* Fill in window class structure with parameters that describe the */

/* main window. */

® wc.style = NULL; /* Class style(s). */

© wc.1pfnWndProc = MainWndProc; /* Function to retrieve messages for */
/* windows of this class. */

O wc.cbClsExtra = 0; /* No per-class extra data. */

wc.cbWndExtra = @; /* No per-window extra data. */

© wc.hlnstance = hInstance; /* Application that owns the class. */

® wc.hIcon = LoadIcon(NULL, IDI_APPLICATION);

@ wc.hCursor = LoadCursor(NULL, IDC_ARROW);

® wc.hbrBackground = GetStockObject (WHITE_BRUSH);

© wc.lpszMenuName = "GenericMenu"; /* Name of menu in .RC file. */

® wc.lpszClassName = "GenericWClass"; /* Name used with CreateWindow. */

/* Register the window class and return success/failure code. */

return (RegisterClass(&wc));

In this example of a window class structure:

@ The example first declares that this is a WNDCLASS structure named “wc”.
® The style field is set to NULL.

©® The IpfnWndProc field contains a pointer to the window function named
MainWndProc. This means that the application’s MainWndProc function will

2-8 Guide to Programming

then receive any messages that Windows sends to that window, and will be
the function that carries out tasks for that window.

To assign the address of the MainWndProc function to the IpfnWndProc
field, you must declare the function somewhere before the assignment state-
ment. Windows applications should use function prototypes for function de-
claration in order to take advantage of the C Compiler’s automatic
type-checking and casting. The following is the correct prototype for a
window function with the name MainWndProc:

lTong FAR PASCAL MainWndProc (HWND, unsigned, WORD,.LONG);

Note that the MainWndProc function must be exported in the module-
definition file.

O The cbClsExtra and cboWndExtra fields are set to zero, so there is no addi-
tional storage space associated with either the window class or each in-
dividual window. (You can set these fields to allocate additional storage
space which you can then use to store information on a per-window basis.
See Chapter 16, “More Memory Management,” for information on using this
extra space.)

©® The hlnstance field is set to hInstance, the instance handle that Windows
passed to the WinMain function when the application was started.

O The hlcon field receives a handle to a built-in icon. The LoadIcon function
can return a handle to either a built-in or an application-defined icon. In this
case, the NULL and IDI_APPLICATION arguments specify the built-in
application icon. (Most applications use their own icons instead of the built-in
application icon. Chapter 5, “Icons,” explains how to create and use your own
icons.)

@ The hCursor field receives a handle to the standard arrow-shaped cursor
(pointer). The Load Cursor function can return a handle to either a built-in or
an application-defined cursor. In this case, the NULL and IDC_ARROW ar-
guments specify the built-in arrow cursor. (Some applications use their own
cursors instead of built-in cursors. Chapter 6, “The Cursor, the Mouse, and
the Keyboard,” explains how to create and use your own Cursors.)

© The hbrBackground field determines the color of the brush that Windows
will use to paint the window’s background. In this case, the application uses
the GetStockObject function to get the handle of the standard white back-
ground brush.

A Generic Windows Application 2-9

© The IpszMenuName field specifies the name of the menu for this window
class, “GenericMenu.” This menu will then appear for all windows in this
class. If the window class has no menu, this field is set to NULL.

@® The IpszClassName field specifies “GenericWClass” as the class name for
this window class.

Registering the Window Class

After you assign values to the WNDCLASS structure fields, you register the
class by using the RegisterClass function. If registration is successful, the func-
tion returns TRUE; otherwise, it returns FALSE. Make sure you check the return
value because you cannot create your windows without first registering the
window class.

Although the RegisterClass function requires a 32-bit pointer to a WNDCLASS
structure, in the previous example, the address operator (&) generates only a 16-
bit address. This is an example of an implicit cast carried out by the C Compiler.
The Windows include file contains prototypes for all Windows functions. These
prototypes specify the correct types for each function parameter, and the com-
piler casts to these types automatically.

2.3.5 Creating a Window

You can create a window by using the CreateWindow function. This function
tells Windows to create a window that has the specified style and belongs to the
specified class. CreateWindow takes several parameters:

m The name of the window class
®m The window title

® The window’s style

® The window position

® The parent window handle

® The menu handle

® The instance handle

® Thirty-two bits of additional data

2-10 Guide to Programming

The following example creates a window belonging to the “GenericWClass™
window class:

/* Create a main window for this application instance. */

hWnd = CreateWindow(

©® "GenericWClass", /* See RegisterClass() call. */

® "Generic Sample Application",/* Text for window title bar. */

© WS_OVERLAPPEDWINDOW, /* Window style. */

O CW_USEDEFAULT, /* Default horizontal position. */
CW_USEDEFAULT, /* Default vertical position. */
CW_USEDEFAULT, /* Default width. */

CW_USEDEFAULT, /* Default height. */

O NULL, /* Overlapped windows have no parent. */
O NULL, /* Use the window class menu. */

@ hinstance, /* This instance owns this window. */
© NULL /* Pointer not needed. */

This example creates an overlapped window that has the style WS_OVER-
LAPPEDWINDOW and that belongs to the window class created by the code in

the

o

preceding example. In this example:

The first parameter of the CreateWindow function specifies the name of the
window class Windows should use when creating the window. In this ex-
ample, the window class name is “GenericWClass.”

The second parameter of CreateWindow specifies the window caption as
“Generic Sample Application”.

The WS_OVERLAPPEDWINDOW style specifies that the window is a nor-
mal “overlapped” window.

The next four CreateWindow parameters specify the position and dimen-
sions of the window. Since the CW_USEDEFAULT value is specified for the
position, width, and height parameters, Windows will place the window at a
default position and give it a default width and height. The default position
and dimensions depend on the system and on how many other applications
have been started. (Note that Windows does not display the window until you
call the ShowWindow function.)

When you create a window, you can specify its parent (used with controls
and child windows). Because an overlapped window does not have a parent,
this parameter is set to NULL.

If you specify a menu when you create a window, the menu overrides the
class menu (if any) for the window. Because this window will use the class
menu, this parameter is set to NULL.

You must specify the instance of the application that is creating the window.
Windows uses this instance to make sure that the window function supporting
the window uses the data for this instance.

A Generic Windows Application 2-11

©® The last parameter is for additional data to be used by the window function
when the window is created. This window takes no additional data, so the par-
ameter is set to NULL.

When CreateWindow successfully creates the window, it returns a handle to the
new window. You can use the handle to carry out tasks on the window, such as
showing it or updating its client area.

If CreateWindow cannot create the window, it returns NULL. Whenever you
create a window, you should check for a NULL handle and respond appro-
priately. For example, in the WinMain function, if you cannot create your appli-
cation’s main window, you should terminate the application; that is, return
control to Windows.

2.3.6 Showing and Updating a Window

Although CreateWindow creates a window, it does not automatically display
the window. Instead, it is up to you to display the window by using the Show-
Window function and to update the window’s client area by using the
UpdateWindow function.

The ShowWindow function tells Windows to display the new window. For the
application’s main window, WinMain should call ShowWindow soon after creat-
ing the window, and should pass the nCmdShow parameter to it. The nCmdShow
parameter tells the application whether to display the window as an open window
or as an icon. After calling ShowWindow, WinMain should call the Update-
Window function. The following example illustrates how to show and update a

window:
ShowWindow(hWnd, nCmdShow); /* Shows the window */
UpdateWindow(hWnd) ; /* Sends WM_PAINT message*/

NOTE Normally, the nCmdShow parameter of the ShowWindow function can be set to any
of the constants beginning with “SW_" that are defined in WINDOWS.H. The one exception
is when the application calls ShowWindow to display its main window; then, it uses the
nCmdShow parameter from the WinMain function. (See the Reference, Volume 1, for a
complete list of these constants.)

2.3.7 Creating the Message Loop

Once you have created and displayed a window, the WinMain function can begin
its primary duty: to read messages from the application queue and dispatch them
to the appropriate window. WinMain does this by using a message loop. A
“message loop” is a program loop, typically created by using a while statement,
in which WinMain retrieves messages and dispatches them.

2-12 Guide to Programming

Windows does not send input directly to an application. Instead, it places all
mouse and keyboard input into an application queue (along with messages posted
by Windows and other applications). The application must read the application
queue, retrieve the messages, and dispatch them so that the appropriate window
function can process them.

The simplest possible message loop consists of the GetMessage and Dispatch-
Message functions. This loop has the following form:

MSG msg;

while (GetMessage(&msg, NULL, NULL, NULL)) |
DispatchMessage(&msg);
}

In this example, the GetMessage function retrieves a message from the applica-
tion queue and copies it into the message structure named “msg”. The NULL ar-
guments indicate that all messages should be processed. The DispatchMessage
function directs Windows to send each message to the appropriate window func-
tion. Every message an application receives, except the WM_QUIT message,
belongs to one of the windows created by the application. Since an application
must not call a window function directly, it instead uses the DispatchMessage
function to pass each message to the appropriate function.

Depending on what your application does, you may need a more complicated
message loop. In particular, to process character input from the keyboard, you
must translate each message you receive by using the TranslateMessage func-
tion. Your message loop should then look like this:

while (GetMessage(&msg, NULL, NULL, NULL)) f
TranslateMessage(&msg);
DispatchMessage(&msg);

}

The TranslateMessage function looks for matching WM_KEYDOWN and
WM_KEYUP messages and generates a corresponding WM_CHAR message for
the window that contains the ANSI character code for the given key.

A message loop may also contain functions to process menu accelerators and key
strokes within dialog boxes. Again, this depends on what your application actu-
ally does.

Windows places input messages in an application queue when the user moves the
cursor in the window, presses or releases a mouse button when the cursor is in
the window, or presses or releases a keyboard key when the window has the
input focus. The window manager first collects all keyboard and mouse input in a
system queue, then copies the corresponding messages to the appropriate applica-
tion queue.

A Generic Windows Application 2-13

The message loop continues until GetMessage returns NULL, which it does only
if it retrieves the WM_QUIT message. This message is a signal to terminate the
application, and is usually posted (placed in the application queue) by the
window function of the application’s main window.

2.3.8 Yielding Control

Windows is a non-preemptive multitasking system. This means that Windows
cannot take control from an application. The application must yield control
before Windows can reassign control to another application.

To make sure that all applications have equal access to the CPU, the Get-
Message function automatically yields control when there are no messages in an
application queue. This means that if there is no work for the application to do,
Windows can give control to another application. Since all applications have a
message loop, this implicit yielding of control guarantees sharing of control.

In general, you should rely on the GetMessage function to yield for your applica-
tion. Although a function (Yield) is available that explicitly yields control, you
should avoid using it. Since there might be times when your application must
keep control for a long time, such as when writing a large buffer to a disk file,
you should try to minimize the work and provide a visual clue to the user that a
lengthy operation is underway.

2.3.9 Terminating an Application

Your application terminates when the WinMain function returns control to
Windows. You can return control at any time before starting the message loop.
Typically, an application checks each step leading up to the message loop to
make sure each window class is registered and each window is created. If there is
an error, the application can display a message before terminating.

Once the WinMain function enters the message loop, however, the only way to
terminate the loop is to posta WM_QUIT message in the application queue by
using the PostQuitMessage function. When the GetMessage function retrieves a
WM_QUIT message, it returns NULL, which terminates the message loop. Typi-
cally, the window function for the application’s main window posts a
WM_QUIT message when the main window is being destroyed (that is, when the
window function has received a WM_DESTROY message).

Although WinMain specifies a data type for its return value, Windows does not
currently use the return value. While you are debugging an application, however,
a return value can be helpful. In general, you might use the same return-code con-
ventions that standard C programs use: zero for successful execution, nonzero for
error. The PostQuitMessage function lets the window function specify the return
value. This value is then copied to the wParam parameter of the WM_QUIT
message. To return this value after terminating the message loop, use the follow-
ing statement:

2-14 Guide to Programming

return (msg.wParam); /* Returns the value from PostQuitMessage */

Although standard C programs typically clean up and free resources just prior to
termination, Windows applications should clean up as each window is destroyed.
If you do not clean up as each window is destroyed, you lose some data. For ex-
ample, when Windows itself terminates, it destroys each window, but does not re-
turn control to the application’s message loop. This means that the loop never
retrieves the WM_QUIT message and the statements after the loop are not ex-
ecuted. (Windows does send each application a message before terminating, so
an application does have an opportunity to carry out tasks before terminating.

See Chapter 10, “File Input and Output,” for an illustration of the WM_QUERY-
ENDSESSION message.)

2.3.10 Initialization Functions

Most applications use two locally defined initialization functions:

m The main initialization function carries out work that only needs to be done
once for all instances of the application (for example, registering window
classes).

m The instance initialization function performs tasks that must be done for
every instance of the application.

Using initialization functions helps to keep the WinMain function simple and
readable; it also organizes initialization tasks so that they can be placed in a sepa-
rate code segment and discarded after use. The Generic application does not dis-
card its initialization functions. (In Chapter 15, “Memory Management,” you will
encounter a sample application, Memory, that does discard its initialization func-
tions.)

The Generic application’s main initialization function looks like the following:

BOOL InitApplication(hInstance)
HANDLE hlInstance; /* current instance */

{

WNDCLASS wc;

/*
/*

wC.
wC.

wC.

wcC.

wC.
wC.

chClsExtra
cbWndExtra

in window class structure with parameters that describe the */

main window. */

= NULL; /* Class style(s). */
1pfnWndProc = MainWndProc; /* Function to retrieve messages for */
/* windows of this class. */
=0; /* No per-class extra data. */
=0; /* No per-window extra data. */
hinstance = hlnstance; /* Application that owns the class. */
= LoadIcon(NULL, IDI_APPLICATION);

A Generic Windows Application 2-15

wc.hCursor = LoadCursor(NULL, IDC_ARROW);

wc.hbrBackground = GetStockObject(WHITE_BRUSH);

wc.1pszMenuName = "GenericMenu"; /* Name of menu resource in .RC file. */
wc.1pszClassName = "GenericWClass"; /* Name used in call to CreateWindow. */
/* Register the window class and return success/failure code. */

return (RegisterClass(&wc));

Generic’s instance initialization function looks like the following:

BOOL InitInstance(hInstance, nCmdShow)

HANDLE hInstance; /* Current instance identifier. */

int nCmdShow; /* Param for first ShowWindow() call. */
{

HWND hWnd; /* Main window handle. */

/* Save the instance handle in static variable, which will be used in */
/* many subsequence calls from this application to Windows. */

hInst = hlnstance;
/* Create a main window for this application instance. */

hWnd = CreateWindow(

"GenericWClass", /* See RegisterClass() call. */
"Generic Sample Application", /* Text for window title bar. */
WS_OVERLAPPEDWINDOW, /* Window style. */

CW_USEDEFAULT, /* Default horizontal position. */
CW_USEDEFAULT, /* Default vertical position. */
CW_USEDEFAULT, /* Default width. */

CW_USEDEFAULT, /* Default height. */

NULL, /* Overlapped windows have no parent. */
NULL, /* Use the window class menu. */
hInstance, /* This instance owns this window. */
NULL /* Pointer not needed. */

)s
/* If window could not be created, return "failure" */

if (!lhWnd)
return (FALSE);

/* Make the window visible; update its client area; and return "success" */
ShowWindow(hWnd, nCmdShow); /* Show the window */

UpdateWindow(hWnd); /* Sends WM_PAINT message */
return (TRUE);

2-16 Guide to Programming

2.3.11 The Application Command-Line Parameter

You can examine the command line that starts your application by using the
IpCmdLine parameter. The [pCmdLine parameter points to the start of a character
array that contains the command exactly as it was typed by the user. To extract
filenames or options from the command line, you need to parse the command
line into individual values. Alternatively, you can use the _ _argc and argv
variables. For more information, see Chapter 14, “C and Assembly Language.”

2.4 The Window Function

Every window must have a window function. The window function responds to
input and window-management messages received from Windows. The window
function can be a short function, processing only a message or two, or it can be
complex, processing many types of messages for a variety of application
windows.

A window function has the following form:

long FAR PASCAL MainWndProc(hWnd, message, wParam, 1Param)

HWND hWnd; /* window handle */
unsigned message; /* type of message */
WORD wParam; /* additional information */
LONG 1Param; /* additional information */

{
switch (message) {

default: /* Passes it on if unprocessed */
return (DefWindowProc(hWnd, message,
wParam, 1Param));
}
return (NULL);
}

The window function uses the PASCAL calling convention. Since Windows
calls this function directly and always uses this convention, PASCAL is re-
quired. The window function also uses the FAR key word in its definition, since
Windows uses a 32-bit address whenever it calls a function. Also, you must
name the window function in an EXPORTS statement in the application’s
module-definition file. See Section 2.6, “Creating a Module-Definition File,” for
more information on module-definition files.

The window function receives messages from Windows. These may be input
messages that have been dispatched by the WinMain function or window-

A Generic Windows Application 2-17

management messages that come directly from Windows. The window function
must examine each message; it then either carries out some specific action based
on the message, or passes the message back to Windows for default processing
through the DefWindowProc function.

The message parameter defines the message type. You use this parameter in a
switch statement to direct processing to the correct case. The IParam and
wParam parameters contain additional information about the message. The
window function typically uses these parameters to carry out the requested ac-
tion. If a window function doesn’t process a message, it must pass it to the Def-
WindowProc function. Passing the message to DefWindowProc ensures that
any special actions that affect the window, the application, or Windows itself can
be carried out.

Most window functions process the WM_DESTROY message. Windows sends
this message to the window function immediately after destroying the window.
The message gives the window function the opportunity to finish its processing
and, if it is the window function for the application’s main window, to post a
WM_QUIT message in the application queue. The following example shows
how the main window function should process this message:

case WM_DESTROY:
PostQuitMessage(d);
break;

The PostQuitMessage function places a WM_QUIT message in the applica-
tion’s queue. When the GetMessage function retrieves this message, it will termi-
nate the message loop and the application.

A window function receives messages from two sources. Input messages come
from the message loop and window-management messages come from Windows.
Input messages correspond to mouse input, keyboard input, and sometimes timer
input. Typical input messages are WM_KEYDOWN, WM_KEYUP,
WM_MOUSEMOVE, and WM_TIMER, all of which correspond directly to
hardware input.

Windows sends window-management messages directly to a window function
without going through the application queue or message loop. These window
messages are typically requests for the window function to carry out some action,
such as painting its client area or supplying information about the window. The
messages may also inform the window function of changes that Windows has
made to the window. Some typical window-management messages are
WM_CREATE, WM_DESTROY, and WM_PAINT.

The window function should return a long value. The actual value to be returned
depends on the message received. The Reference, Volume 1, describes the return
values when they are significant (for most messages, the return value is arbi-
trary). If the window function doesn’t process a message, it should return the
DefWindowProc function’s return value.

2-18 Guide to Programming

2.5 Creating an About Dialog Box

The System Application Architecture, Common User Access: Advanced Interface
Design Guide recommends that you include an About dialog box with every
application. A “dialog box” is a temporary window that displays information or
prompts the user for input. The About dialog box displays such information as
the application’s name and copyright information. The user tells the application
to display the About dialog box by choosing the About command from a menu.
(See the System Application Architecture, Common User Access: Advanced Inter-
face Design Guide for more information about design conventions for the About
dialog box.)

You create and display a dialog box by using the DialogBox function. This func-
tion takes a dialog-box template, a procedure-instance address, and a handle to a
parent window, and creates a dialog box through which you can display output
and prompt the user for input.

To display and use an About dialog box, follow these steps:

1. Create a dialog-box template and add it to your resource script file.
2. Add a dialog function to your C-language source file.

3. Export the dialog function in your module-definition file.

4. Add a menu to your application’s resource script file.

5. Process the WM_COMMAND message in your application code.

Once you have completed these steps, the user can display the dialog box by
choosing the About command from your application’s menu. The following sec-
tions explain these steps in more detail.

2.5.1 Creating a Dialog-Box Template

A dialog-box template is a textual description of the dialog style, contents, shape,
and size. You can create a template by hand or by using the Windows version 3.0
Dialog Editor. In this example, the template is created by hand. Tools explains
how to use the Dialog Editor to create a dialog box.

You create a dialog-box template by creating a resource script file. A resource
script file contains definitions of resources to be used by the application, such as
icons, cursors, and dialog-box templates. To create an About dialog-box tem-
plate, you use a DIALOG statement and fill it with control statements, as shown
in the following example:

@ AboutBox DIALOG 22, 17, 144, 75

@ STYLE DS_MODALFRAME | WS_CAPTION | WS_SYSMENU
CAPTION "About Generic"

A Generic Windows Application 2-19

© BEGIN
O CTEXT "Microsoft Windows" -1, @, 5, 144, 8
CTEXT "Generic Application" -1, @, 14, 144, 8
CTEXT "Version 3.9" -1, @, 34, 144, 8
© DEFPUSHBUTTON "OK" IDOK, 53, 59, 32, 14, WS_GROUP
END

In this example:

© The DIALOG statement starts the dialog-box template. The name,
AboutBox, identifies the template when the DialogBox function is used to
create the dialog box. The box’s upper-left corner is placed at the point
(22,17) in the parent window’s client area. The box is 144 units wide by 75
units high. The horizontal units are 14 of the dialog base width unit; the verti-
cal units are 18 of the dialog base height unit. The current dialog base units
are computed from the height and width of the current system font. The
GetDialogBaseUnits function returns the dialog base units in pixels.

® The STYLE statement defines the dialog-box style. This particular style is a
window with a framed border, a caption bar, and a system menu, which is the
typical style used for modal dialog boxes.

©® The BEGIN and END statements mark the beginning and end of the control
definitions. The dialog box contains text and a default push button. The push
button lets the user send input to the dialog function to terminate the dialog
box.

The statements, strings, and integers contained between the BEGIN and
END statements describe the contents of the dialog box. (Because you would
normally create such a description using the Dialog Editor, this guide does
not describe the numbers and statements that make up the description. See
Tools for a complete description of how to use the Dialog Editor.)

O CTEXT creates a rectangle with the quoted text centered in a rectangle. This
statement appears several times for the various texts that appear in the dialog
box.

© DEFPUSHBUTTON creates a push button that allows the user to give a de-
fault response; in this case, to choose the “OK” button, causing the dialog box
to disappear.

The DS_MODALFRAME, WS_CAPTION, WM_SYSMENU, IDOK, and
WS_GROUP constants used in the dialog-box template are defined in the
Windows include file. You should include this file in the resource script file by
using the #include directive at the beginning of the script file.

The statements in this file were created with a text editor, and were based on a
dialog box used in another application. You can create many such resources by
copying them from other applications and modifying them using a text editor.
You can also create new dialog boxes by using the Dialog Editor. (The files

2-20 Guide to Programming

created by the Dialog Editor contain statements that are somewhat different from
the statements shown here, and such files usually are edited only by using the
Dialog Editor. For more information about using the Dialog Editor to create
dialog boxes, see Tools.)

2.5.2 Creating an Include File

It is often useful to create an include file in which to define constants and func-
tion prototypes for your application. Most applications consist of at least two
source files that share common constants: the C-language source file and the
resource script file. Since the Resource Compiler (RC) carries out the same pre-
processing as the C Comopiler, it is useful and convenient to place constant defini-
tions in a single include file and then include that file in both the C-language
source file and the resource script file.

For example, for the Generic application, you can place the function prototypes
for the WinMain, MainWndProc, About, InitApplication, and InitInstance func-
tions, and the definition of the menu ID for the About command, in the
GENERIC.H include file. The file should look like this:

f#fdefine IDM_ABOUT 100

int PASCAL WinMain (HANDLE, HANDLE, LPSTR, int);
BOOL InitApplication (HANDLE);

BOOL InitInstance (HANDLE, int);

Tong FAR PASCAL MainWndProc (HWND, unsigned, WORD,
LONG) ;

BOOL FAR PASCAL About (HWND, unsigned, WORD, LONG);

Since GENERIC.H refers to Windows data types, you must include it after
WINDOWS.H, which defines those data types. That is, the beginning of your
source files should look like this:

f#include "WINDOWS.H" /* required for all Windows applications */
f#Hinclude "GENERIC.H" /* specific to this program */

2.5.3 Creating a Dialog Function

A “dialog box” is a special kind of window whose window procedure is built into
Windows. For every dialog box an application has, the application must have a
dialog function. Windows’ built-in window procedure calls a dialog function to
handle input messages that can be interpreted only by the application.

The function that processes input for Generic’s About dialog box is called About.
This function, like other dialog functions, uses the same parameters as a window
function, but processes only messages that are not handled by Windows’ default
processing. (The dialog function returns TRUE if it processes a message, and
FALSE if it does not.) The dialog function, like the window function, uses the
PASCAL calling convention and the FAR key word in its definition. You must

A Generic Windows Application 2-21

name the dialog function in an EXPORTS statement in the application’s module-
definition file. As with a window function, you must not call a dialog function
directly from your application.

Unlike a window function, a dialog function usually processes only user-input
messages, such as WM_COMMAND, and must not send unprocessed messages
to the DefWindowProc function. Generic’s dialog function, About, looks like

this:
BOOL FAR PASCAL About(hDlg, message, wParam, T1Param)
HWND hD1g; /* window handle of the dialog box */
unsigned message; /* type of message */
WORD wParam; /* message-specific information */

LONG 1Param;
{
switch (message) {
case WM_INITDIALOG: /* message: initialize dialog box */
return (TRUE);

case WM_COMMAND: /* message: received a command */
if (wParam == IDOK| | /* "0K" box selected? */
wParam == IDCANCEL) { /* System menu close command? */
EndDialog(hD1g, TRUE); /* Exits the dialog box */
return (TRUE);
}
break;
}
return (FALSE); /* Didn't process a message */

The About dialog function processes two messages: WM_INITDIALOG and
WM_COMMAND. Windows sends the WM_INITDIALOG message to a dialog
function to let the function prepare before displaying the dialog box. In this case,
WM_INITDIALOG returns TRUE so that the “focus” will be passed to the first
control in the dialog box that has the WS_TABSTOP bit set (this control will be
the default push button). If WM_INITDIALOG had returned FALSE, then
Windows will not set the focus to any control.

In contrast to WM_INITDIALOG messages, WM_COMMAND messages are a
result of user input. About responds to input to the OK button or the system-
menu Close command by calling the EndDialog function, which directs
Windows to remove the dialog box and continue execution of the application.
The EndDialog function is used to terminate dialog boxes.

2.5.4 Defining a Menu with an About Command

Now that you have an About dialog box, you need some way to let the user tell
your application when to display the dialog box. In most applications, the About
command would appear as the last command on the application’s Help menu. If
the application does not have a Help menu, then it usually appears in the first

2-22 Guide to Programming

menu, most often the File menu. In Generic, About is the only command, so it ap-
pears as the only item on the Help menu.

The most common way to create a menu is to define it in the resource script file.
Put the following statements in GENERIC.RC:

GenericMenu MENU

BEGIN
POPUP "&Help"
BEGIN
MENUITEM "About Generic...", IDM_ABOUT
END
END

These statements create a menu named “GenericMenu” with a single command
on it, “Help.” The command displays a pop-up menu with the single menu item
“About Generic...”.

Notice the ampersand (&) in the “&Help” string. This character immediately
precedes the command mnemonic. A mnemonic is a unique letter or digit with
which the user can access a menu or command. It is part of Windows’ direct-
access method. If a user presses the key for the mnemonic, together with the ALT
key, Windows selects the menu or chooses the command. In the case of
“&Help”, Windows removes the ampersand and places an underscore under the
letter “H” when displaying the menu.

The user will see the About command when he or she displays the Help menu. If
the user chooses the About command, Windows sends the window function a
WM_COMMAND message containing the About command’s menu ID; in this
case, IDM_ABOUT.

2.5.5 Processing the WM_COMMAND Message

Now that you’ve added a command to Generic’s menu, you need to be able to re-
spond when the user selects the command. To do this, you need to process the
WM_COMMAND message. Windows sends this message to the window func-
tion when the user chooses a command from the window’s menu. Windows
passes the menu ID identifying the command in the wParam parameter, so you
can check to see which command was chosen. (In this case, you can use if and
else statements to direct the flow of control depending on the value of the
wParam parameter. As your application’s message-processing becomes more
complex, you may want to use a switch statement instead.) You want to display
the dialog box if the parameter is equal to IDM_ABOUT, the About command’s
menu ID. For any other value, you must pass the message on to the DefWindow-
Proc function. If you do not, you effectively disable all other commands on the
menu.

A Generic Windows Application 2-23

The WM_COMMAND case should look like this:
FARPROC 1pProcAbout;

case WM_COMMAND: /* message: command from a menu */
if (wParam == IDM_ABOUT) {

@ 1pProcAbout = MakeProcInstance(About, hinst);

® DialogBox(hInst, /* current instance */
"AboutBox", /* resource to use */
hWnd, /* parent handle */
TpProcAbout); /* About() inst. address */
© FreeProcInstance(1pProcAbout);
break;

}

else /* Let Windows process it */

return (DefWindowProc(hWnd, message, wParam, 1Param));

© Before displaying the dialog box, you need the procedure-instance address of
the dialog function. You create the procedure-instance address by using the
MakeProcInstance function. This function binds the data segment of the cur-
rent application instance to a function pointer. This guarantees that when
Windows calls the dialog function, the dialog function will use the data in the
current instance and not some other instance of the application.

MakeProclnstance returns the address of the procedure instance. This value
should be assigned to a pointer variable that has the FARPROC type.

® The DialogBox function creates and displays the dialog box. It requires the
current application’s instance handle and the name of the dialog-box tem-
plate. It uses this information to load the dialog-box template from the exe-
cutable file. DialogBox also requires the handle of the parent window (the
window to which the dialog box belongs) and the procedure-instance address
of the dialog function.

DialogBox does not return control until the user has closed the dialog box.
Typically, the dialog box contains at least a push-button control to permit the
user to close the box.

©® When the DialogBox function returns, the procedure-instance address of the
dialog function is no longer needed, so the FreeProcInstance function frees
the address. This invalidates the content of the pointer variable, making it an
error to attempt to use the value again.

2-24 Guide to Programming

2.6 Creating a Module-Definition File

Every Windows application needs a module-definition file. This file defines the
name, segments, memory requirements, and exported functions of the applica-
tion. For a simple application, like Generic, you need at least the NAME,
STACKSIZE, HEAPSIZE, EXETYPE, and EXPORTS statements. However,
most applications include a complete definition of the module, as shown in the
following example:

;module-definition file for Generic — used by LINK.EXE

@ NAME Generic ; application's module name

@® DESCRIPTION 'Sample Microsoft Windows Application’

© EXETYPE WINDOWS ; Required for all Windows applications

® STUB "WINSTUB.EXE ; Generates error message if applicatio
; is run without Windows

© CODE MOVEABLE DISCARDABLE ; code can be moved in memory and
; discarded/reloaded

;DATA must be MULTIPLE if program can be invoked more than once
O DATA MOVEABLE MULTIPLE

© HEAPSIZE 1024
©® STACKSIZE 5128 ; recommended minimum for Windows applications

; A11 functions that will be called by any Windows routine
; MUST be exported.

© EXPORTS
MainWndProc @1 ; name of window-processing function
AboutDlgProc @2 ; name of About processing function

The semicolon is the delimiter for comments in the module-definition file.

In this example:

©® The NAME statement defines the name of the application. This name (in the
example, Generic) is used by Windows to identify the application. The
NAME statement is required.

® The DESCRIPTION statement is an optional statement that places the
message “Sample Microsoft Windows Application” in the application’s exe-
cutable file. This statement is typically used to add version control or copy-
right information to the file.

A Generic Windows Application 2-25

© The EXETYPE statement marks the executable file as either a Windows or
an OS/2 executable file. Windows application must contain the statement
EXETYPE WINDOWS,; since, by default, the linker creates executable files
for the MS OS/2 environment.

@ The STUB statement specifies another optional file that defines the exe-
cutable stub to be placed at the beginning of the file. When a user tries to run
the application without Windows, the stub is executed instead. Most
Windows applications use the WINSTUB.EXE executable file supplied with
the SDK. WINSTUB displays a warning message and terminates the applica-
tion if the user attempts to run the application without Windows. You can
also supply your own executable stub.

©® The CODE statement defines the memory attributes of the application’s code
segment. The code segment contains the executable code that is generated
when the GENERIC.C file is compiled. Generic is a small-model application
with only one code segment, which is defined as MOVEABLE DISCARD-
ABLE. If the application is not running and Windows needs additional space
in memory, Windows can move the code segment to make room for other
segments and, if necessary, discard it. A discarded code segment is automati-
cally reloaded on demand by the Windows operating system.

® The DATA statement defines the memory requirements of the application’s
data segment. The data segment contains storage space for all the static varia-
bles declared in the GENERIC.C file. It also contains space for the program
stack and local heap. The data segment, like the code segment, is
MOVEABLE. The MULTIPLE key word directs Windows to create a new
data segment for the application each time the user starts a new instance of
the application. Although all instances share the same code segment, each has
its own data segment. An application must have the MULTIPLE key word if
the user can run more than one copy of it at a time.

©® The HEAPSIZE statement defines the size, in byses, of the application’s
local heap. Generic uses its heap to allocate the temporary structure used to
register the window class, so it specifies 1024 bytes of storage. Applications
that use the local heap frequently should specify larger amounts of memory.

O The STACKSIZE statement defines the size, in bytes, of the application’s
stack. The stack is used for temporary storage of function arguments. Any
application, like Generic, that calls its own local function must have a stack.
Generic specifies 5120 bytes of stack storage, the recommended minimum for
a Windows application.

© The EXPORTS statement defines the names and ordinal values of the func-
tions to be exported by the application. Generic exports its window function,
MainWndProc, which has ordinal value 1 (this is an identifier; it could be any
integer, but usually such values are assigned sequentially as the exports are
listed). You must export all functions that Windows will call (except the Win-
Main function). These functions are referred to as “callback” functions. Call-
back functions include the following:

2-26 Guide to Programming

m All window functions
m All dialog functions

m Special callback functions, such as enumeration functions, that certain
Windows API functions require

m Any other function that will be called from outside your application
For more information on callback functions, see Chapter 14, “C and Assembly
Language.”

For more information on module-definition statements, see the Reference,
Volume 2.

2.7 Putting Generic Together

At this point you are ready to put the sample application, Generic, together. (You
can find copies of the Generic source files on the SDK Sample Source Code
disk.)

To create the Generic application, you need to do the following:

1. Create the C-language source (.C) file.

2. Create the header (.H) file.

3. Create the resource script (.RC) file.

4. Create the module-definition (.DEF) file.

5. Create the make file.

6. Run the MAKE utility on the file to compile and link the application.

The following sections describe each step.

NOTE Rather than typing the code presented in the following sections, you might find it
more convenient to simply examine and compile the sample source files provided with the
SDK.

2.7.1 Create the C-Language Source File

The C-language source file contains the WinMain function, the MainWndProc
window function, the About dialog function, and the InitApplication and Init-
Instance initialization functions. Name the file GENERIC.C.

The contents of the file GENERIC.C look like this:

A Generic Windows Application 2-27

/***

PROGRAM: GENERIC.C

PURPOSE: Generic template for Windows applications

FUNCTIONS:

WinMain() - calls initialization function, processes message loop
InitApplication() - initializes window data and registers window
InitInstance() - saves instance handle and creates main window
MainWndProc() - processes messages

About() - processes messages for "About" dialog box

COMMENTS:

Windows can have several copies of your application running
at the same time. The variable hInst keeps track of which

instance this application is so that processing will be to
the correct window.

/**/

ffinclude "windows.h" /* required for all Windows applications */
#include "generic.h" /* specific to this program x/
HANDLE hlnst; : /* current instance */

/**

FUNCTION: WinMain(HANDLE, HANDLE, LPSTR, int)

PURPOSE: calls initialization function, processes message loop

COMMENTS:

Windows recognizes this function by name as the initial entry point
for the program. This function calls the application initialization
routine, if no other instance of the program is running, and always
calls the instance initialization routine. It then executes a message
retrieval and dispatch Toop that is the top-level control structure
for the remainder of execution. The loop is terminated when a WM_QUIT
message is received, at which time this function exits the application
instance by returning the value passed by PostQuitMessage().

If this function must abort before entering the message loop, it
returns the conventional value NULL.

**/

int PASCAL WinMain(hInstance, hPrevIinstance, 1pCmdLine, nCmdShow)

HANDLE hInstance; /* current instance */
HANDLE hPrevInstance; /* previous instance */
LPSTR 1pCmdLine; /* command line */

int nCmdShow; /* show-window type (open/icon) */

2-28 Guide to Programming

MSG msg; /* message */
if (!hPrevinstance) /* Other instances of app running? */
if (!InitApplication(hInstance)) /* Initialize shared things */
return (FALSE); /* Exits if unable to initialize */

/* Perform initializations that apply to a specific instance */

if (!InitInstance(hInstance, nCmdShow))
return (FALSE);

/* Acquire and dispatch messages until a WM_QUIT message is received. */

while (GetMessage(&msg, /* message structure */
NULL, /* handle of window receiving the message */
NULL, /* lowest message to examine */
NULL)) /* highest message to examine */
{
TranslateMessage(&msg); /* Translates virtual key codes */
DispatchMessage(&msg); /* Dispatches message to window */
}

return (msg.wParam); /* Returns the value from PostQuitMessage */
}

/**

FUNCTION: InitApplication(HANDLE)
PURPOSE: Initializes window data and registers window class
COMMENTS:

This function is called at initialization time only if no other
instances of the application are running. This function performs
initialization tasks that can be done once for any number of running
instances.

In this case, we initialize a window class by filling out a data
structure of type WNDCLASS and calling the Windows RegisterClass()
function. Since all instances of this application use the same window
class, we only need to do this when the first instance is initialized.

**/

BOOL InitApplication(hInstance)
HANDLE hInstance; /* current instance */
{

WNDCLASS wc;

/* Fi1l in window class structure with parameters that describe the */
/* main window. */

A Generic Windows Application 2-29

wc.style = NULL; /* Class style(s). */

wc.lpfnWndProc = MainWndProc; /* Function to retrieve messages for */
/* windows of this class. */

wc.cbClsExtra = 0; /* No per-class extra data. */

wc.cbWndExtra = @; /* No per-window extra data. */

wc.hInstance = hlnstance; /* Application that owns the class. */

wc.hIcon = LoadIcon(NULL, IDI_APPLICATION);

wc.hCursor = LoadCursor(NULL, IDC_ARROW);

wc.hbrBackground = GetStockObject(WHITE_BRUSH);

wc.lpszMenuName = "GenericMenu"; /* Name of menu resource in .RC file. */
wc.1pszClassName = "GenericWClass";/* Name used in call to CreateWindow. */

/* Register the window class and return success/failure code. */
return (RegisterClass(&wc));

}

/**

FUNCTION: InitInstance(HANDLE, int)
PURPOSE: Saves instance handle and creates main window

COMMENTS:

This function is called at initialization time for every instance of
this application. This function performs initialization tasks that
cannot be shared by multiple instances.

In this case, we save the instance handle in a static variable and
create and display the main program window.

**/

BOOL InitInstance(hInstance, nCmdShow)

HANDLE hInstance; /* Current instance identifier. */

int nCmdShow; /* Param for first ShowWindow() call. */
{

HWND hWnd; /* Main window handle. */

/* Save the instance handle in static variable, which will be used in */
/* many subsequence calls from this application to Windows. */

hinst = hlnstance;
/* Create a main window for this application instance. */

hWnd = CreateWindow(

"GenericWClass", /* See RegisterClass() call. */
"Generic Sample Application", /* Text for window title bar. */
WS_OVERLAPPEDWINDOW, /* Window style. */

CW_USEDEFAULT, /* Default horizontal position. */
CW_USEDEFAULT, /* Default vertical position. */

CW_USEDEFAULT, /* Default width. */

2-30 Guide to Programming

CW_USEDEFAULT, /* Default height. */

NULL, /* Overlapped windows have no parent. */
NULL, /* Use the window class menu. */
hinstance, /* This instance owns this window. */
NULL /* Pointer not needed. */

/* If window could not be created, return "failure" */

if (!hWnd)
return (FALSE);

/* Make the window visible; update its client area; and return "success" */

ShowWindow(hWnd, nCmdShow); /* Show the window */
UpdateWindow(hWnd); /* Sends WM_PAINT message */
return (TRUE); /* Returns the value from PostQuitMessage */

}

/**

FUNCTION: MainWndProc(HWND, unsigned, WORD, LONG)

PURPOSE: Processes messages

MESSAGES:
WM_COMMAND - application menu (About dialog box)
WM_DESTROY - destroy window

COMMENTS:

To process the IDM_ABOUT message, call MakeProcInstance to get the
current instance address of the About function. Then call DialogBox,
which will create the box according to the information in your
generic.rc file and turn control over to the About function. When

it returns, free the instance address.

**/

long FAR PASCAL MainWndProc(hWnd, message, wParam, 1Param)

HWND hWnd; /* window handle */

unsigned message; /* type of message */

WORD wParam; /* additional information */
LONG 1Param; /* additional information */

{
FARPROC 1pProcAbout; /* pointer to the "About" function */

A Generic Windows Application 2-31

switch (message) {
case WM_COMMAND: /* message: command from application menu */
if (wParam == IDM_ABOUT) {
1pProcAbout = MakeProcInstance(About, hInst);

DialogBox(hInst, /* current instance */
"AboutBox", /* resource to use */
hWnd, /* parent handle */
1pProcAbout); /* About() instance address */

FreeProcInstance(1pProcAbout);

break;

}
else /* Lets Windows process it */

return (DefWindowProc(hWnd, message, wParam, 1Param));

case WM_DESTROY: /* message: window being destroyed */
PostQuitMessage(d);

break;

default: /* Passes it on if unproccessed */

return (DefWindowProc(hWnd, message, wParam, 1Param));
}
return (NULL);
}

/**

FUNCTION: About(HWND, unsigned, WORD, LONG)

PURPOSE: Processes messages for "About" dialog box

MESSAGES:
WM_INITDIALOG - initialize dialog box
WM_COMMAND - Input received
COMMENTS:

No initialization is needed for this particular dialog box, but TRUE
must be returned to Windows.

Wait for user to click on "OK" button, then close the dialog box.

**/

BOOL FAR PASCAL About(hD1g, message, wParam, 1Param)

HWND hD1g; /* window handle of the dialog box */
unsigned message; /* type of message */
WORD wParam; /* message-specific information */

LONG 1Param;

2-32 Guide to Programming

switch (message) {

case WM_INITDIALOG: /* message: initialize dialog box */
return (TRUE);

case WM_COMMAND: /* message: received a command */
if (wParam == IDOK || /* "0K" box selected? */
wParam == IDCANCEL) { /* System menu close command? */
EndDialog(hDlg, TRUE); /* Exits the dialog box */
return (TRUE);
}
break;
}
return (FALSE); /* Didn't process a message */

2.7.2 Create the Header File

The header file contains definitions and declarations required by the C-language
source file which are incorporated into the source code by an #include directive.
Name the file GENERIC.H and make sure it looks like this:

jtdefine IDM_ABOUT 100

int PASCAL WinMain (HANDLE, HANDLE, LPSTR, int);
BOOL InitApplication (HANDLE);

BOOL InitInstance (HANDLE, int);

lTong FAR PASCAL MainWndProc (HWND, unsigned, WORD, LONG);
BOOL FAR PASCAL About (HWND, unsigned, WORD, LONG);

2.7.3 Create the Resource Script File

The resource script file must contain the Help menu and the dialog-box template
for the About dialog box. Name the file GENERIC.RC and make sure it looks
like this:

f#include "windows.h"
#include "generic.h"

GenericMenu MENU

BEGIN
POPUP "&Help"
BEGIN
MENUITEM "About Generic...", IDM_ABOUT
END

END

A Generic Windows Application 2-33

AboutBox DIALOG 22, 17, 144, 75
STYLE DS_MODALFRAME | WS_CAPTION | WS_SYSMENU
CAPTION "About Generic"

BEGIN
CTEXT "Microsoft Windows" -1, o, 5, 144, 8
CTEXT "Generic Application” -1, @, 14, 144, 8
CTEXT "Version 3.8" -1, @, 34, 144, 8
DEFPUSHBUTTON "OK" IDOK, 53, 59, 32, 14, WS_GROUP
END

2.7.4 Create the Module-Definition File

The module-definition file must contain the module definitions for Generic.
Name the file GENERIC.DEF and make sure it looks like this:

;module-definition file for Generic — used by LINK.EXE

NAME Generic ; application's module name

DESCRIPTION 'Sample Microsoft Windows Application'

EXETYPE WINDOWS ; Required for all Windows applications

STUB "WINSTUB.EXE' ; Generates error message if application
; 1S run without Windows

CODE MOVEABLE DISCARDABLE; code can be moved in memory and discarded/reloaded
;DATA must be MULTIPLE if program can be invoked more than once
DATA MOVEABLE MULTIPLE

HEAPSIZE 1@24
STACKSIZE 5120 ; recommended minimum for Windows applications

; A11 functions that will be called by any Windows routine
; MUST be exported.

EXPORTS
MainWndProc @1 ; name of window-processing function
AboutDlgProc @2 ; name of About processing function

2.7.5 Create a Make File

Once you have the source files, you can create Generic’s make file, then compile
and link the application by using the MAKE program. To compile and link
Generic, the make file must follow these steps:

2-34 Guide to Programming

m Use the C Compiler (CL) to compile the GENERIC.C file.

m Use the linker (LINK) to link the GENERIC.OBJ object file with the
Windows library and the module-definition file, GENERIC.DEF.

= Use the Resource Compiler (RC) to create a binary resource file and add it to
the executable file of the Windows application.

The following will properly compile and link the files created for Generic:

Standard Windows make file. The utility MAKE.EXE compares the

creation date of the file to the left of the colon with the file(s)

to the right of the colon. If the file(s) on the right are newer

then the file on the left, MAKE will execute all of the command lines
following this line that are indented by at least one tab or space.

Any valid MS-DOS command line may be used.

Update the resource if necessary

© generic.res: generic.rc generic.h
rc -r generic.rc

Update the object file if necessary

@® generic.obj: generic.c generic.h
¢l -c -Gsw -0as -Zpe generic.c

Update the executable file if necessary, and if so, add the resource back in.

© generic.exe: generic.obj generic.def
link /NOD generic, , , slibcew 1ibw, generic.def
rc generic.res

If the .res file is new and the .exe file is not, update the resource.
Note that the .rc file can be updated without having to either
compile or link the file.

O generic.exe: generic.res
rc generic.res

@ The first two lines direct MAKE to create a compiled resource file,
GENERIC.RES, if the resource script file, GENERIC.RC, or the new include
file, GENERIC.H, has been updated. The —r option of the RC command
creates a compiled resource file without attempting to add it to an executable
file, since this must be done as the last step in the process.

® The next two lines direct MAKE to create the GENERIC.OBJ file if
GENERIC.C or GENERIC.H has a more recent access date than the current
GENERIC.OBIJ file. The ¢l command takes several command-line options
that prepare the application for execution under Windows. The minimum

A Generic Windows Application 2-35

required options are —c, -Gw, and —Zp. In this case, the C Compiler assumes
that Generic is a small-model application. Generic and all other applications
in this guide are small-model applications.

® The MAKE program then creates the GENERIC.EXE file if the
GENERIC.OBJ or GENERIC.DEF file has a more recent access date than the
current GENERIC.EXE file. Small Windows applications, like Generic, must
be linked with the Windows SLIBW.LIB library and the Windows version of
the C run-time library, SLIBCEW.LIB. The object file, GENERIC.OBJ, and
the module-definition file, GENERIC.DEF, are used as arguments in the
LINK command line.

O The last RC command automatically appends the compiled resources in the
file GENERIC.RES to the executable file, GENERIC.EXE.

2.7.6 Run the MAKE Program

Once you have created the make file, you can compile and link your application
by running the MAKE utility. The following example runs MAKE using the
commands in the file GENERIC:

MAKE GENERIC

2.8 Using Generic as a Template

Generic provides essentials that make it an appropriate starting point for your
applications. It conforms to the standards given in the System Application Archi-
tecture, Common User Access: Advanced Interface Design Guide for appearance
and cooperation with other applications. It contains all the files an application
can have: .DEF, .H, .RC, .C, and a make file. The About dialog box, an applica-
tion standard, is included, as is the About Generic... command on the Help menu.

You can use Generic as a template to build your own applications. To do this,
copy and rename the sources of an existing application, such as Generic, then
change relevant function names, and insert new code. All sample applications in
this guide have been created by copying and renaming Generic’s source files,
then modifying some of the function and resource names to make them unique to
each new application.

The following procedure explains how to use Generic as a template and adapt its
source files to your application:

1. Choose your application’s filename.

2. Copy the following Generic source files, renaming them to match your appli-
cation’s filename: GENERIC.C, GENERIC.H, GENERIC.DEF,
GENERIC.RC, and GENERIC.

2-36 Guide to Programming

3. Use a text editor to change each occurrence of “Generic” in your applica-

tion’s C-language source file to your application’s name. This includes chang-
ing the following:

m The class name: GenericWClass

m The class menu: GenericMenu

m The window title: Generic Sample Application
m The include filename: GENERIC.H

. Use a text editor to change each occurrence of “Generic” in your applica-

tion’s module-definition file to your application’s name. This includes chang-
ing the following:

m The application name: Generic

Use a text editor to change each occurrence of “Generic” in your applica-
tion’s resource script file to your application’s name. This includes changing
the following:

m The include filename: GENERIC.H
m The application title: Generic Application

m The menu name: GenericMenu

. Use a text editor to change each occurrence of “Generic” in your applica-

tion’s make file to your application’s name. This includes changing the fol-
lowing:

m The C-language source filename: GENERIC.C

m The object filename: GENERIC.OBJ

m The executable filename: GENERIC.EXE

m The module-definition filename: GENERIC.DEF

As you add new resources and include files to your applications, be sure to use
your application’s filename to ensure that these names are unique.

2.9 Summary

This chapter described the required elements of a Windows application, and ex-
plained how to build Generic, a simple application that contains those elements.
You can use Generic as a template on which to build your own Windows applica-
tions.

A Windows application must contain a WinMain function and a window func-
tion. The WinMain function performs initializations, processes messages, and ter-
minates the application. The window function responds to input and window-
management messages that it receives from Windows.

A Generic Windows Application 2-37

For more information on topics related to simple Windows applications, see the

following:

Topic

The Windows programming

model

The message loop

Menus

Dialog boxes

Using C run-time routines
and assembly language in
Windows applications

Windows functions and
messages

The WM_COMMAND
message

Data types and structures

Software development tools

Reference

Guide to Programming: Chapter 1, “An
Overview of the Windows Environment”

Guide to Programming: Chapter 2, “A
Generic Windows Application”

Guide to Programming: Chapter 7, “Menus”

Guide to Programming: Chapter 9, “Dialog
Boxes”

Guide to Programming: Chapter 14, “C and
Assembly Language”

Reference, Volume 1

Reference, Volume 1: Chapter 6, “Messages
Directory”

Reference, Volume 2: Chapter 7, “Data Types
and Structures”

Tools

Part

Programming

Windows

Applications

Like most applications, Windows applications receive input from the user and
send output to the screen and printer. Unlike standard applications, however,
Windows applications must cooperate within a multitasking, graphics-based en-
vironment. For this reason, they cannot read directly from the keyboard or write
directly to output devices. Instead, they must allow Windows to mediate be-
tween the application and shared system resources. The apparent penalty this im-
poses upon an application is offset by the built-in support Windows provides an
application for advanced user-interface and system-interface features.

For example, a user typically provides input to a Windows application by choos-
ing commands from menus, and by entering and selecting information in dialog
boxes. In the Windows environment, you do not have to implement the details of
how these menus and dialog boxes are displayed and respond to the user’s input.
Instead, you simply provide a high-level description of their contents and specify
the messages that your application will receive when the user interacts with the
item. Windows provides the low-level tasks of displaying the menus and dialog
boxes and of tracking the user’s interaction with them.

Part 1 provided an overview of the Windows environment and the basic structure
of a Windows application, and introduced some typical application features,
such as windows, menus and dialog boxes.

Part 2 explains each of the major aspects of a Windows application in more
detail. In the chapters that follow, you’ll learn how to create and work with
windows, icons, cursors, menus, dialog boxes, and other features that make a
Windows application distinctive and easy to use.

Each chapter in Part 2 covers a particular topic in Windows programming, and
provides a sample application that illustrates the concepts in that chapter.

—
_— R RSB ESSSDDmimm—emm—

CHAPTERS

3 Output to a Window

4 Keyboard and Mouse Input

9 Icons

6 The Cursor, the Mouse, and the Keyboard
7

8

9

Menus
Controls
Dialog Boxes
10 File Input and Output
11 Bitmaps
12 Printing
13 The Clipboard

Chapter | Quiput to a Window

3

In Microsoft Windows, all output to a window is performed by the graphics
device interface (GDI).

This chapter covers the following topics:

® How the painting and drawing process works in the Windows environment
= The purpose of the display context and the WM_PAINT message
® Using GDI functions to draw within the client area of a window

® Drawing lines and figures, writing text, and creating pens and brushes

This chapter also explains how to build a sample application, Output, that il-
lustrates some of these concepts.

3.1 The Display Context

A display context defines the output device and the current drawing tools, colors,
and other drawing information used by GDI to generate output. All GDI output
functions require a display-context handle. No output can be performed without
one.

To draw within a window, you need the handle to the window. You can then use
the window handle to get a handle to the display context of the window’s client
area.

The method you use to retrieve the handle to the display context depends on
where you plan to perform the output operations. Although you can draw and
write anywhere within an application, including within the WinMain function,
most applications do so only in the window function. The most common time to
draw and write is in response to a WM_PAINT message. Windows sends this
message to a window function when changes to the window may have altered the
content of the client area. Since only the application knows what is in the client
area, Windows sends the message to the window function so that this function
can restore the client area.

For the WM_PAINT message, you typically use the BeginPaint function. If you
plan to draw within the client area at any time other than in response to a

3-2 Guide to Programming

3.1.1 Using the

WM_PAINT message, you must use the GetDC function to retrieve the handle
to the display context.

Whenever you retrieve a display context for a window, that context is only on
temporary loan from Windows to your application. A display context is a shared
resource; as long as one application has it, no other application can retrieve it.
Therefore, you must release the display context as soon as possible after using it
to draw within the window. If you retrieve a display context by using the GetDC
function, you must use the ReleaseDC function to release it. Similarly, for Begin-
Paint, you use the EndPaint function.

GetDC Function

You typically use the GetDC function to provide instant feedback to some action
by the user, such as drawing a line as the user moves the cursor (pointer) through
the window. The function returns a display-context handle that you can use in
any GDI output function.

The following example shows how to use the GetDC function to retrieve a
display-context handle and write the string “Hello Windows!” in the client area:

hDC = GetDC(hWnd);
TextOut(hDC, 10,10, "Hello Windows!", 14);
ReleaseDC(hWnd, hDC);

In this example, the GetDC function returns the display context for the window
identified by the /Wnd parameter, and the TextOut function writes the string at
the point (10,10) in the window’s client area. The ReleaseDC function releases
the display context.

Anything you draw in the client area will be erased the next time the window
function receives a WM_PAINT message that affects that part of the client area.
The reason is that Windows sends a WM_ERASEBKGND message to the
window function while processing the WM_PAINT message. If you pass
WM_ERASEBKGND on to the DefWindowProc function, DefWindowProc
fills the affected area by using the class background brush, erasing any output
you may have previously drawn there.

3.1.2 The WM_PAINT Message

Windows posts a WM_PAINT message when the user has changed the window.
For example, Windows posts a WM_PAINT message when the user closes a
window that covers part of another window. Since a window shares the screen
with other windows, anything the user does in one window can have an impact
on the content and appearance of another window. However, you can do nothing
about the change until your application receives the WM_PAINT message.

Output to a Window 3-3
E

Windows posts a WM_PAINT message by making it the last message in the
application queue. This means any input is processed before the WM_PAINT
message. In fact, the GetMessage function also retrieves any input generated
after the WM_PAINT message is posted. That is, GetMessage retrieves the
WM_PAINT message from the queue only when there are no other messages.
The reason for this is to let the application carry out any operations that might af-
fect the appearance of the window. In general, output operations should be car-
ried out as infrequently as possible to avoid flicker and other distracting effects.
Windows helps ensure this by holding the WM_PAINT message until it is the
last message.

The following example shows how to process a WM_PAINT message:
PAINTSTRUCT ps;

case WM_PAINT:
hDC = BeginPaint(hWnd, &ps);
/* Qutput operations */
EndPaint(hWnd, &ps);
break;

The BeginPaint and EndPaint functions are required. BeginPaint fills the
PAINTSTRUCT structure, ps, with information about the paint request, such as
the part of the client area that needs redrawing, and returns a handle to the dis-
play context. You can use the handle in any GDI output functions. The EndPaint
function ends the paint request and releases the display context.

You must not use the GetDC and ReleaseDC functions in place of the Begin-
Paint and EndPaint functions. BeginPaint and EndPaint carry out special
tasks, such as validating the client area and sending the WM_ERASEBKGND
message, that ensure that the paint request is processed properly. If you use
GetDC instead of BeginPaint, the painting request will never be satisfied and
your window function will continue to receive the same paint request.

3.1.3 Invalidating the Client Area

Windows is not the only source of WM_PAINT messages. You can also generate
WM_PAINT messages for your windows by using the InvalidateRect or
InvalidateRgn functions. These functions mark all or part of a client area as in-
valid (in need of redrawing). For example, the following function invalidates the
entire client area:

InvalidateRect(hWnd, NULL, TRUE);

This example invalidates the entire client area for the window identified by the
hWnd parameter. The NULL argument, used in place of a rectangle structure,
specifies the entire client area. The TRUE argument causes the background to be
erased.

3-4 Guide to Programming

f

When the client area is marked as invalid, Windows posts a WM_PAINT
message. If other parts of the client area are marked as invalid, Windows does
not post another WM_PAINT message. Instead, it adds the invalidated areas to
the previous area, so that all areas are processed by the same WM_PAINT
message.

If you change your mind about redrawing the client area, you can validate parts
of it by using the ValidateRect and ValidateRgn functions. These functions re-
move any previous invalidation and will remove the WM_PAINT message if no
other invalidated area remains.

If you do not want to wait for the WM_PAINT message to be retrieved from the
application queue, you can force an immediate WM_PAINT message by using
the UpdateWindow function. If there is any invalid part of the client area,
UpdateWindow pulls the WM_PAINT message for the given window from the
queue and sends it directly to the window function.

3.1.4 Display Contexts and Device Contexts

A display context is actually a type of “device context” that has been especially
prepared for output to the client area of a window. A device context defines the
device, drawing tools, and drawing information for a complete device, suchasa
display or printer; a display context defines these things only for a window’s
client area. To prepare a display context, Windows adjusts the device origin so
that it aligns with the upper-left corner of the client area instead of with the upper-
left corner of the display. It also sets a clipping rectangle so that output to a dis-
play context is “clipped” to the client area. This means any output that would
otherwise appear outside the client area is not sent to the display.

3.1.5 The Coordinate System

The default coordinate system for a display context is very simple. The upper-left
corner of the client area is the origin, or point (0,0). Each pixel to the right repre-
sents one unit along the positive x-axis. Each pixel down represents one unit
along the positive y-axis.

You can modify this coordinate system by changing the mapping mode and dis-
play origins. The mapping mode defines the coordinate-system units. The default
mode is MM_TEXT, or one pixel per unit. You can also specify mapping modes
that use inches or millimeters as units. The SetMapMode function changes the
mapping mode for a device. The origin of the coordinate system can be moved to
any point by calling the SetViewportOrg function.

For simplicity, the examples in this chapter and throughout this guide use the de-
fault coordinate system.

Output to a Window 3-5
g

3.2 Creating, Selecting, and Deleting Drawing Tools

GDI lets you use a variety of drawing tools to draw within a window. It provides
pens to draw lines, brushes to fill interiors, and fonts to write text. To create these
tools, use functions such as CreatePen and CreateSolidBrush. Then select them
into the display context by using the SelectObject function. When you are done
using a drawing tool, you can delete it by using the DeleteObject function.

Use the CreatePen function to create a pen for drawing lines and borders. The
function returns a handle to a pen that has the specified style, width, and color.
(Be sure to check the return value of CreatePen to ensure that it is a valid
handle.)

The following example creates a dashed, black pen, one pixel wide:

HPEN hDashPen;

hDashPen = CreatePen(PS_DASH, 1, RGB(@, @, 2));
if (hDashPen) /* make sure handle is valid */

The RGB utility creates a 32-bit value representing a red, green, and blue color
value. The three arguments specify the intensity of the colors red, green, and
blue, respectively. In this example, all colors have zero intensity, so the specified
color is black.

You can create solid brushes for drawing and filling by using the Create-
SolidBrush function. This function returns a handle to a brush that contains the
specified solid color. (Be sure to check the return value of CreateSolidBrush to
ensure that it is a valid handle.)

The following example shows how to create a red brush:

HBRUSH hRedBrush

hRedBrush = CreateSolidBrush(RGB(255, @, @));
if (hRedBrush) /* make sure handle is valid */

3-6 Guide to Programming

Once you have created a drawing tool, you can select it into a display context by
using the SelectObject function. The following example selects the red brush for
drawing:

HBRUSH hO01dBrush;

h01dBrush = SelectObject(hDC, hRedBrush);

In this example, SelectObject returns a handle to the previous brush. In general,
you should save the handle of the previous drawing tool so that you can restore it
later.

You do not have to create or select a drawing tool before using a display context.
Windows provides default drawing tools with each display context; for example,
a black pen, a white brush, and the system font.

You can delete drawing objects you no longer need by using the DeleteObject
function. The following example deletes the brush identified by the handle
hRedBrush:

DeleteObject(hRedBrush);

You must not delete a selected drawing tool. You should use the SelectObject
function to restore a previous drawing tool and remove the tool to be deleted
from the selection, as shown in the following example:

SelectObject(hDC, h01dBrush);
DeleteObject(hRedBrush);

Although you can create and select fonts for writing text, working with fonts is a
fairly involved process and is not described in this chapter. For a full discussion
of how to create and select fonts, see Chapter 18, “Fonts.”

3.3 Drawing and Writing

GDI provides a wide variety of output operations, from drawing lines to writing
text. Specifically, you can use the LineTo, Rectangle, Ellipse, Arc, Pie, Text-
Out, and DrawText functions to draw lines, rectangles, circles, arcs, pie wedges,
and text, respectively. All these functions use the selected pen and brush to draw
borders and fill interiors, and the selected font to write text.

You can draw lines by using the LineTo function. You usually combine the
MoveTo and LineTo functions to draw lines. The following example draws a
line from the point (10,90) to the point (360,90):

MoveTo(hDC, 1@, 99);
LineTo(hDC, 368, 99);

Output to a Window 3-7

You can draw a rectangle by using the Rectangle function. This function uses
the selected pen to draw the border, and the selected brush to fill the interior. The
following example draws a rectangle that has its upper-left and lower-right
corners at the points (10,30) and (60,80), respectively:

Rectangle (hDC, 10, 3@, 60, 80);

You can draw an ellipse or circle by using the Ellipse function. The function
uses the selected pen to draw the border, and the selected brush to fill the
interior. The following example draws an ellipse that is bounded by the rectangle
specified by the points (160,30) and (210,80):

E1lipse (hDC, 160, 3@, 210, 80);

You can draw arcs by using the Arc function. You draw an arc by defining a
bounding rectangle for the circle containing the arc, then specifying on which
points the arc starts and ends. The following example draws an arc within the
rectangle defined by the points (10,90) and (360,120); it draws the arc from the
point (10,90) to the point (360,90):

Arc(hDC, 10, 90, 360, 120, 10, 90, 360, 90);

You can draw a pie wedge by using the Pie function. A pie wedge consists of an
arc and two radii extending from the focus of the arc to its endpoints. The Pie
function uses the selected pen to draw the border, and the selected brush to fill
the interior. The following example draws a pie wedge that is bounded by the
rectangle specified by the points (310,30) and (360,80) and that starts and ends at
the points (360,30) and (360,80), respectively:

Pie (hDC, 310, 30, 360, 89, 360, 30, 360, 80);

You can display text by using the TextOut function. The function displays a
string starting at the specified point. The following example displays the string
“A Sample String” at the point (1,1):

TextOut(hDC, 1, 1, "A Sample String", 15);

You can also use the DrawText function to display text. This function is similar
to TextOut, except that it lets you write text on multiple lines. The following ex-
ample displays the string “This long string illustrates the DrawText function” on
multiple lines in the specified rectangle:

RECT rcTextBox;
LPSTR 1pText = "This long string illustrates the DrawText function":

SetRect(&rcTextBox, 1, 10, 160, 40);
DrawText (hDC, 1pText, strlen(1pText), &rcTextBox, DT_LEFT);

3-8 Guide to Programming

This example displays the string pointed to by the IpText variable as one or more
left-aligned lines in the rectangle specified by the points (1,10) and (160,40).

Although you can also create and display bitmaps in a window, the process is not
described in this chapter. For details, see Chapter 11, “Bitmaps.”

3.4 A Sample Application: Output

The sample application Output illustrates how to use the WM_PAINT message
to draw within the client area, as well as how to create and use drawing tools.
The Output application is a simple extension of the Generic application described
in the previous chapter. To create the Output application, copy and rename the
source files of the Generic application, then make the following modifications:
Add new variables.

. Modify the WM_CREATE case.

. Add a WM_PAINT case.

. Modify the WM_DESTROY case.

L N N R

. Compile and link the application.

You can find the source files for Output on the SDK Sample Source Code disk.

This sample assumes that you have a color display. If you do not, GDI will simu-
late some of the color output by “dithering.” Dithering is a method of simulating
a color by creating a unique pattern with two or more available colors. On a color
monitor that cannot display orange, for example, Windows simulates orange by
using a pattern of red and yellow pixels. On a monochrome monitor, Windows
represents colors with black, white, and shades of gray, instead of colors.

NOTE Rather than typing the code presented in the following sections, you might find it
more convenient to simply examine and compile the sample source files provided with the
SDK.

3.4.1 Add New Variables

You need several new global variables for this sample application. Add the fol-
lowing variables at the beginning of your C-language source file:

HPEN hDashPen; /* "—" pen handle */
HPEN hDotPen; /* "..." pen handle */
HBRUSH h01dBrush; /* old brush handle */

HBRUSH hRedBrush; /* red brush handle */

Output to a Window 3-9

HBRUSH hGreenBrush; /* green brush handle */
HBRUSH hBlueBrush; /* blue brush handle */

You also need new local variables in the window function. Declare the following
at the beginning of the MainWndProc function:

HDC hDC; /* display-context variable */
PAINTSTRUCT ps; /* paint structure */
RECT rcTextBox; /* rectangle around the text */
HPEN hO1dPen; /* o1ld pen handle */

3.4.2 Add the WM_CREATE Case

You must create the drawing tools to be used in Output’s client area before any
drawing is carried out. Since you need to create these tools only once, a con-
venient place to do so is in the WM_CREATE message. Add the following state-
ments to the MainWndProc function:

case WM_CREATE:
/* Create the brush objects */
hRedBrush = CreateSolidBrush(RGB(255, a, 3));

hGreenBrush = CreateSolidBrush(RGB(@, 255, @3));
hBlueBrush = CreateSolidBrush(RGB(@, @, 255));

/* Create the "—-" pen */

hDashPen = CreatePen(PS_DASH, /* style */
1, /* width */
RGB(@, @, @)); /* color */

/* Create the "..." pen */

hDotPen = CreatePen(PS_DOT, /* style */
1, /* width */
RGB(@, @, 0)); /* color */

break;

The CreateSolidBrush functions create the solid brushes to be used to fill the
rectangle, the ellipse, and the circle that Output draws on the screen in response
to the WM_PAINT message. The CreatePen functions create the dotted and
dashed lines used to draw borders.

3.4.3 Add the WM_PAINT Case

The WM_PAINT message informs your application when it should redraw all or
part of its client area. To handle this message, add to the window function the fol-
lowing case statement:

3-10 Guide to Programming

case WM_PAINT:

{

TEXTMETRIC textmetric;
int nDrawX;

int nDrawY;

char szText[300];

/* Set up a display context to begin painting */
hDC = BeginPaint (hWnd, &ps);

/* Get the size characteristics of the current font. */
/* This information will be used for determining the */
/* vertical spacing of text on the screen. */

GetTextMetrics (hDC, &textmetric);

/* Initialize drawing position to 1/4 inch from the top */
/* and from the left of the top, left corner of the */
/* client area of the main window. */

nDrawX = GetDeviceCaps (hDC, LOGPIXELSX) / 4; /* 1/4 inch */
nDrawY = GetDeviceCaps (hDC, LOGPIXELSY) / 4; /* 1/4 inch */

/* Send characters to the screen. After displaying each */
/* line of text, advance the vertical position for the */
/* next line of text. The pixel distance between the top */
/* of each line of text is equal to the standard height of */
/* the font characters (tmHeight), plus the standard */
/* amount of spacing (tmExternalleading) between adjacent */
/* lines. */

strcpy (szText, "These characters are being painted using ");
TextOut (hDC, nDrawX, nDrawY, szText, strlen (szText));
nDrawY += textmetric.tmExternalleading + textmetric.tmHeight;

strcpy (szText, "the TextOut() function, which is fast and ");
TextOut (hDC, nDrawX, nDrawY, szText, strlen (szText));
nDrawY += textmetric.tmExternallLeading + textmetric.tmHeight;

strcpy (szText, "allows programmer control of placement and ");
TextOut (hDC, nDrawX, nDrawY, szText, strlen (szText));
nDrawY += textmetric.tmExternalleading + textmetric.tmHeight;

strcpy (szText, "formatting details. However, TextOut() ");
TextOut (hDC, nDrawX, nDrawY, szText, strlen (szText));
nDrawY += textmetric.tmExternalleading + textmetric.tmHeight;

strcpy (szText, "does not provide any automatic formatting.");
TextOut (hDC, nDrawX, nDrawY, szText, strlen (szText));
nDrawY += textmetric.tmExternalleading + textmetric.tmHeight;

Output to a Window 3-11

/* Put text in a 5-inch by l-inch rectangle and display it. */
/* First define the size of the rectangle around the text */

nbrawY += GetDeviceCaps (hDC, LOGPIXELSY) / 4; /* 1/4 inch */
SetRect (
&rcTextBox
, nDrawX
, nDrawY
, nDrawX + (5 * GetDeviceCaps (hDC, LOGPIXELSX)) /* 5" =*/
» nDrawY + (1 * GetDeviceCaps (hDC, LOGPIXELSY)) /* 1" */

/* Draw the text within the bounds of the above rectangle */

strcpy (szText, "This text is being displayed with a single "
"call to DrawText(). DrawText() isn't as fast "
"as TextOut(), and it is somewhat more "
"constrained, but it provides numerous optional "
"formatting features, such as the centering and "
"line breaking used in this example.");

DrawText (

hDC

szText

strien (szText)

&rcTextBox

DT_CENTER | DT_EXTERNALLEADING | DT_NOCLIP

| DT_NOPREFIX | DT_WORDBREAK

)3

/* Paint the next object immediately below the bottom of */
/* the above rectangle in which the text was drawn. */

nDrawY = rcTextBox.bottom;

/* The (x,y) pixel coordinates of the objects about to be */
/* drawn are below, and to the right of, the current */
/* coordinate (nDrawX,nDrawY). */

/* Draw a red rectangle.. */

h01dBrush = SelectObject(hDC, hRedBrush);
Rectangle (

hDC

nDrawX

nDrawY

nDrawX + 50

nDrawY + 30

v e e e

3-12 Guide to Programming

/* Draw a green ellipse */

SelectObject(hDC, hGreenBrush);
E11ipse (

hDC

nDrawX + 150

nDrawY

nDrawX + 150 + 50

nDrawY + 30

. e e e

)3
/* Draw a blue pie shape */

SelectObject(hDC, hBlueBrush);
Pie (

hDC

nDrawX + 300
nDrawY

nDrawX + 300 + 50
nDrawY + 50
nDrawX + 300 + 50
nDrawY

nDrawX + 300 + 50
nDrawY + 50

)3

nDrawY += 50;

/* Restore the old brush */
SelectObject(hDC, hOT1dBrush);

/* Select a "—-" pen, save the old value */

nDrawY += GetDeviceCaps (hDC, LOGPIXELSY) / 4; /* 1/4 inch */
hOl1dPen = SelectObject(hDC, hDashPen);

/* Move to a specified point */
MoveTo(hDC, nDrawX, nDrawY);

/* Draw a line */

LineTo(hDC, nDrawX + 35@, nDrawY);
/* Select a "..." pen */

SelectObject(hDC, hDotPen);

Output to a Window 3-13

L -

/* Draw an arc connecting the line */

Arc

)5

(

hDC

nDrawX
nDrawY - 20
nDrawX + 350
nDrawY + 20
nDrawX
nDrawY
nDrawX + 350
nDrawY

v e e e e e e e

/* Restore the old pen */

SelectObject(hDC, h01dPen);

/* Tell Windows you are done painting */

EndPaint (hWnd, &ps);

}
break;

NOTE “Hard-coding” strings using functions such as strepy can make it difficult to trans-
late your application into other languages. If you plan to distribute your application in more
than one language, you should use string tables instead. See the Reference, Volume 2, for
more information about string tables.

3.4.4 Modify the WM_DESTROY Case

Before terminating the Output application, you should delete the drawing tools
created for Output’s window; this frees the memory that each drawing tool uses.
To do this, use the DeleteObject function to delete the various pens and brushes
in the WM_DESTROY case. Modify the WM_DESTROY case so that it looks
like this:

case WM_DESTROY:

DeleteObject(hRedBrush);
DeleteObject(hGreenBrush);
DeleteObject(hBlueBrush);
DeleteObject(hDashPen);
DeleteObject(hDotPen);
PostQuitMessage(d);

break;

You must include one DeleteObject function call for each object to be deleted.

3-14 Guide to Programming

3.4.5 Compile and Link

No changes are required to the make file to recompile and link the Output appli-
cation. After compiling and linking Output, start Windows and the application.
The application should look like Figure 3.1:

= Output Sample Application v|a
Help

These characters are being painted using
the TextOutf) function, which is fast and
allows programmer control of placement and
formatting details. However, TextOut])

does not provide any automatic formatting.

This text is being displayed with a single call to DrawText(). DrawText()
isn't as fast as TextOut{), and it is somewhat more constrained, but it
provides numerous optional formatting features, such as the centering
and line breaking used in this example.

B @ &

Figure 3.1 The Output Application’s Window

You can use the WM_PAINT case of this application to experiment with a
variety of GDI functions. For information about other GDI output functions, see
the Reference, Volume 1.

3.5 Summary

This chapter described how the graphics device interface (GDI) portion of
Windows handles output to a window. GDI uses a “display context” to generate
output. A display context is a data structure, maintained by GDI, that contains
information about the display device you are using.

GDI lets you use a variety of drawing tools and output operations to draw within
a window.

Output to a Window 3-15

For more information on topics related to output, see the following:

Topic

Working with bitmaps

Working with fonts

Window functions and class
and private display contexts

Painting functions

WM_PAINT,
WM_CREATE, and
WM_DESTROY messages

Data types and structures

Reference

Guide to Programming: Chapter 11,
“Bitmaps”

Tools: Chapter 4, “Designing Images:
SDKPaint”

Guide to Programming: Chapter 18, “Fonts”

Tools: Chapter 6, “Designing Fonts: The
Font Editor”

Reference, Volume 1: Chapter 1, “Window
Manager Interface Functions”

Reference, Volume 1: Chapter 2, “Graphics
Device Interface Functions,” and Chapter 4,
“Functions Directory”

Reference, Volume 1: Chapter 6, “Messages
Directory”

Reference, Volume 2: Chapter 7, “Data Types
and Structures”

Chapter

4

Keyboard and Mouse Input

Most applications require input from the user. Typically, input from the user
comes via the keyboard or the mouse. In Microsoft Windows, applications re-
ceive keyboard and mouse input in the form of input messages.

This chapter covers the following topics:

® The input messages that Windows sends your application

® Responding to Windows input messages

This chapter also explains how to build a sample application, Input, that responds
to various types of input messages.

4.1 Windows Input Messages

Whenever the user presses a key, moves the mouse, or clicks a mouse button,
Windows responds by sending input messages to the appropriate application.
Windows also sends input messages in response to timer input.

Windows provides several types of input messages:

Message Description

Keyboard User input through the keyboard.

Character Keyboard input translated into character codes.

Mouse User input through the mouse.

Timer Input from the system timer.

Scroll-bar User input through a window’s scroll bars and the mouse.
Menu User input through a window’s menus and the mouse.

The keyboard, mouse, and timer input messages correspond directly to hardware
input. Windows passes these messages to your application through the applica-
tion queue.

The character, menu, and scroll-bar messages are created in response to mouse
and keyboard actions in the nonclient area of a window, or are the result of

4-2 Guide to Programming

translated keyboard messages. Normally, Windows sends these messages directly
to the appropriate window function.

4.1.1 Message Formats

Input messages come in two formats, depending on how your application re-
ceives them:

m Messages that Windows places in the application queue take the form of a
MSG structure.

The MSG structure contains fields that identify and contain information
about the message. Your application’s message loop retrieves this structure
from the application queue and dispatches it to the appropriate window
function.

m Messages that Windows sends directly to a window function take the form of
four arguments. The arguments correspond to the window function’s A/Wnd,
message, wParam, and I[Param parameters.

The only difference between these two message forms is that the MSG structure
contains two additional pieces of information: the current location of the cursor
(pointer) and the current system time. Windows does not pass this information to
the window function.

4.1.2 Keyboard Input

Much of an application’s user input comes from the keyboard. Windows sends
keyboard input to an application when the user presses or releases a key.
Windows generates keyboard messages in response to the following keyboard

events:

Message Event

WM_KEYDOWN User presses a key.
WM_KEYUP User releases a key.
WM_SYSKEYDOWN User presses a system key.
WM_SYSKEYUP User releases a system key.

The wParam parameter of a keyboard message specifies the “virtual-key code”
of the key the user pressed. A virtual-key code is a device-independent value for
a specific keyboard key. Windows uses virtual-key codes so that it can provide
consistent keyboard input no matter what computer your application is running
on.

Keyboard Iand Mouse Input 4-3

The [Param parameter contains the keyboard’s actual scan code for the key, as
well as additional information about the keyboard, such as the state of the SHIFT
key and whether the current key was previously up or down.

Windows generates system-key messages, WM_SYSKEYUP and WM_SYS-
KEYDOWN. These are special keys, such as the ALT and F10 keys, that belong to
the Windows user interface and cannot be used by an application in any other
way.

An application receives keyboard messages only when it has the “input focus.”
Your application receives the input focus when it is the active application; that is,
when the user has selected your application’s window. You can also use the Set-
Focus function to explicitly set the input focus for a given window, and the Get-
Focus function to determine which window has the focus.

4.1.3 Character Input

Applications that read character input from the keyboard need to use the
TranslateMessage function in their message loops. TranslateMessage trans-
lates a keyboard-input message into a corresponding ANSI-character message,
WM_CHAR or WM_SYSCHAR. These messages contain the ANSI character
codes for the given key in the wParam parameter. The [Param parameter is iden-
tical to /Param in the keyboard-input message.

4.1.4 Mouse Input

User input can also come from the mouse. Windows sends mouse messages to
the application when the user moves the cursor into and through a window or
presses or releases a mouse button while the cursor is in the window. Windows
generates mouse messages in response to the following events:

Message Event

WM_MOUSEMOVE User moves the cursor into or
through the window.

WM_LBUTTONDOWN User presses the left button.

WM_LBUTTONUP User releases the left button.

WM_LBUTTONDBLCLK User presses, releases, and presses

again the left button within the sys-
tem’s defined double-click time.

WM_MBUTTONDOWN User presses the middle button.
WM_MBUTTONUP User releases the middle button.

4-4 Guide to Programming
L]

Message Event

WM_MBUTTONDBLCLK User presses, releases, and presses
again the middle button within the
system’s defined double-click time.

WM_RBUTTONDOWN User presses the right button.
WM_RBUTTONUP User releases the right button.
WM_RBUTTONDBLCLK User presses, releases, and presses

again the right button within the sys-
tem’s defined double-click time.

The wParam parameter of each button includes a bitmask specifying the current
state of the keyboard and mouse buttons, such as whether the mouse buttons,
SHIFT key, and CONTROL key are down. The /Param parameter contains the the x-
and y-coordinates of the cursor.

Windows sends mouse messages to a window only if the cursor is in the window
or if you have captured mouse input by using the SetCapture function. The Set-
Capture function directs Windows to send all mouse input, regardless of where
the cursor is, to the specified window. Applications typically use this function to
take control of the mouse when carrying out some critical operation with the
mouse, such as selecting something in the client area. Capturing the mouse pre-
vents other applications from taking control of the mouse before the operation is
completed.

Since the mouse is a shared resource, it is important to release the captured
mouse as soon as you have finished the operation. You release the mouse by
using the ReleaseCapture function. Use the GetCapture function to determine
which window, if any, has the captured mouse.

Windows sends double-click messages to a window function only if the corre-
sponding window class has the CS_DBLCLKS style. You must set this style
while registering the window class. A double-click message is always the third
message in a four-message series. The first two messages are the first button
press and release. The second button press is replaced with the double-click
message. The last message is the second release. Remember that a double-click
message occurs only if the first and second press occur within the system’s de-
fined double-click time. You can retrieve the current double-click time by using
the GetDoubleClickTime function. You can set it by using the SetDoubleClick-
Time function, but be aware that this sets the double-click time for all applica-
tions, not just your own.

4.1.5 Timer Input

Windows sends timer input to your application when the specified interval
elapses for a particular timer. To receive timer input, you must set a timer by
using the SetTimer function.

Keyboard and Mouse Input 4-5

You can receive timer input in two ways:

® Windows can place a WM_TIMER message in your application’s queue.

®m Windows can call a callback function defined in your application. You
specify the callback function when you call the SetTimer function.

The following example shows how to set timer input for a five-second interval:

idTimer = SetTimer (hWnd, 1, 50@0@, (FARPROC) NULL);

This example sets a timer interval of 5000 milliseconds. This means that the
timer will generate input every five seconds. The second argument is any non-
zero value that your application uses to identify the particular timer. The last ar-
gument specifies the callback function that will receive timer input. Setting this
argument to NULL tells Windows to provide timer input as a WM_TIMER
message. Because there is no callback function specified for timer input,
Windows sends the timer input through the application queue.

The SetTimer function returns a “timer ID”—an integer that identifies the timer.
You can use this timer ID to turn the timer off by using it in the KillTimer
function.

4.1.6 Scroll-Bar Input

Windows sends a scroll-bar input message, either WM_HSCROLL or
WM_VSCROLL, to a window function when the user clicks with the cursor in a
scroll bar. Applications use the scroll-bar messages to direct scrolling within the
window. Applications that display text or other data that does not all fit in the
client area usually provide some form of scrolling. Scroll bars are an easy way to
let the user direct scrolling actions.

To get scroll-bar input, add scroll bars to the window. You can do this by specify-
ing the WS_HSCROLL and WS_VSCROLL styles when you create the window.
These direct the CreateWindow function to create horizontal and vertical scroll
bars for the window. The following example creates scroll bars for the given

window:

hWnd = CreateWindow("InputWCLass", /* window class */
"Input Sample Application", /* window name */
WS_OVERLAPPEDWINDOW | WS_HSCROLL | WS_VSCROLL,
CW_USEDEFAULT, /* x position */
CW_USEDEFAULT, /* y position */
CW_USEDEFAULT, /* width */
CW_USEDEFAULT, /* height */
NULL, /* parent handle */
NULL, /* menu or child ID */
hInstance, /* instance */

NULL); /* additional info */

4-6 Guide to Programming

Windows displays the scroll bars when it displays the window. It automatically
maintains the scroll bars and sends scroll-bar messages to the window function
when the user moves the thumb of the scroll bar.

When Windows sends a scroll-bar message, it sets the wParam parameter of the
message to indicate the type of scrolling request made. For example, if the user
clicks the Up arrow of a vertical scroll bar, Windows sets the wParam parameter
to the value SB_LINEUP. Depending on the event, Windows sets the wParam
parameter to one of the following values:

Value Event

SB_LINEUP User clicks the Up or Left arrow.

SB_LINEDOWN User clicks the Down or Right arrow.

SB_PAGEUP User clicks between the scroll box and the Up or
Left arrow.

SB_PAGEDOWN User clicks between the scroll box and the Down or
Right arrow.

SB_THUMBPOSITION User releases the mouse button when the cursor is in
the scroll box, typically after dragging the box.

SB_THUMBTRACK User drags the scroll box with the mouse.

4.1.7 Menu Input

Whenever the user chooses a command from a menu, Windows sends a menu-
input message to the window function for that window.

There are two types of menu-input messages:
= WM_SYSCOMMAND, which indicates that the user has selected a com-
mand from the System menu.

® ' WM_COMMAND, which indicates that the user has selected a command
from the application’s menu.

Since menu input is often the primary source of input for an application, its pro-
cessing can be complex. See Chapter 7, “Menus,” for more information on
menus and menu input.

4.2 A Sample Application: Input

This sample application, Input, illustrates how to process input messages from
the keyboard, mouse, timer, and scroll bars. The Input application displays the
current or most recent state of each of these input mechanisms. To create the

Keyboard and Mouse Input 4-7

L]

Input application, copy and rename the source files of the Generic application,
then make the following modifications:

. Add new variables.

. Set the window-class style.

. Modify the CreateWindow function.

. Set the text rectangles.

. Add the WM_CREATE case.

. Modify the WM_DESTROY case.

. Add the WM_KEYUP and WM_KEYDOWN cases.

. Add the WM_CHAR case.

. Add the WM_MOUSEMOVE case.

. Add the WM_LBUTTONUP and WM_RBUTTONUP cases.
. Add the WM_LBUTTONDBLCLK case.

. Add the WM_TIMER case.

. Add the WM_HSCROLL and WM_VSCROLL cases.
. Add the WM_PAINT case.

O 00 9 O L A WD =

— e e
AW N = O

15. Compile and link the Input application.

Although Windows does not require a pointing device, this sample assumes that
you have a mouse or other pointing device. If you do not have a mouse, the appli-
cation will not receive mouse-input messages.

NOTE Rather than typing the code presented in the following sections, you might find it
more convenient to simply examine and compile the sample source files provided in the
SDK.

4.2.1 How the Input Application Displays Output

The Input application responds to input messages by displaying text that indi-
cates the type of input message. It uses some simple functions to format and dis-
play the output.

To create a formatted string, use wsprintf, the Windows version of the C run-
time function sprintf. The Windows wsprintf function copies a formatted string
to a buffer; you can then pass the buffer address as an argument to the TextOut
function. In small-model applications, such as the sample applications described
in this guide, be careful when using the wsprintf function; the buffer you specify

4-8 Guide to Programming

1P —

must be defined within the application’s data segment or stack. The following ex-
ample shows how to create a formatted string:

char MouseText[48];

wsprintf(MouseText, "WM_MOUSEMOVE: %x, %d, %d", wParam,
LOWORD(1Param), HIWORD(1Param));

This example copies the formatted string to the MouseText array. The array is de-
clared a local variable so that it can be passed to the wsprintf function.

4.2.2 Add New Variables

You need several new global variables. Declare the following variables at the
beginning of the C-language source file:

char MouseText[48]; /* mouse state */
char ButtonText[48]; /* mouse-button state */
char KeyboardText[48]; /* keyboard state */
char CharacterText[48]; /* latest character */
char Scrol1Text[48]; /* scroll status */
char TimerText[48]; /* timer state */

RECT rectMouse;

RECT rectButton;

RECT rectKeyboard;

RECT rectCharacter;

RECT rectScroll;

RECT rectTimer;

int idTimer; /* timer ID */
int nTimerCount = @; /* current timer count */

The character arrays hold strings that describe the current state of the keyboard,
mouse, and timer. The rectangles keep track of where the strings appear on the
screen; they facilitate the invalidation technique explained in Section 4.2.15,
“Add the WM_PAINT Case.”

You also need some local variables for the window function. Declare the follow-
ing variables at the beginning of the MainWndProc window function:

HDC hDC; /* display-context variable */
PAINTSTRUCT ps; /* paint structure */
char HorzOrVertText[12];

char Scroll1TypeText[201;

RECT rect;

Keyboard and Mouse Input 4-9

Add the following variables to the InitInstance function:

HDC hdc;
TEXTMETRIC textmetric;
RECT rect;
int nLineHeight;

4.2.3 Set the Window-Class Style

Set the window-class style to CS_DBLCLKS to enable double-click processing.
In the initialization function, find this statement:

wc.style = NULL;

Change it to the following:

wc.style = CS_DBLCLKS;

This enables double-click processing for windows that belong to this class.

4.2.4 Modify the CreateWindow Function

Modify the call to the CreateWindow function in order to create a window that
has vertical and horizontal scroll bars. Change the CreateWindow function call
in the WinMain function so that it looks like this:

hWnd = CreateWindow("InputWClass",
"Input Sample Window",
WS_OVERLAPPEDWINDOW | WS_HSCROLL | WS_VSCROLL,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
NULL,
NULL,
hInstance,
NULL);

4.2.5 Set the Text Rectangles

Add the following statements to the InitInstance function to establish the client-
area rectangles in which different messages are displayed:

hDC = GetDC(hWnd);

GetTextMetrics(hDC, &textmetric);

ReleaseDC(hWnd, hDC);

nLineHeight = textmetric.tmExternalleading + textmetric.tmHeight;

4-10 Guide to Programming

{5 —

rect.left = GetDeviceCaps(hDC, LOGPIXELSX) / 4; /* 1/4 inch */
rect.right = GetDeviceCaps(hDC, HORZRES);

rect.top = GetDeviceCaps(hDC, LOGPIXELSY) / 4; /* 1/4 inch */
rect.bottom = rect.top + nLineHeight;

rectMouse = rect;

rect.top += nlLineHeight;
rect.bottom += nlLineHeight;
rectButton = rect;

rect.top += nlLineHeight;
rect.bottom += nlLineHeight;
rectKeyboard = rect;

rect.top += nlLineHeight;
rect.bottom += nLineHeight;
rectCharacter = rect;

rect.top += nlLineHeight;
rect.bottom += nlLineHeight;
rectScroll = rect;

rect.top += nlLineHeight;
rect.bottom += nlLineHeight;
rectTimer = rect;

4.2.6 Add the WM_CREATE Case

Set a timer by using the SetTimer function. You can do this in the
WM_CREATE case. Add the following statements:

case WM_CREATE:
/* Set the timer for five-second intervals */
idTimer = SetTimer(hWnd, NULL, 50@@, (FARPROC) NULL);
break;

4.2.7 Modify the WM_DESTROY Case

You also need to stop the timer before terminating the application. You can do
this in the WM_DESTROY case. Add the following statement:

Ki11Timer(hWnd, idTimer);

4.2.8 Add the WM_KEYUP and WM_KEYDOWN Cases

Add the WM_KEYUP and WM_KEYDOWN cases to process key presses. Add
the following statements to the window function:

Keyhoard and Mouse Input 4-11

case WM_KEYDOWN:
wsprintf(KeyboardText, "WM_KEYDOWN: %x, %x, %x",
wParam, LOWORD(1Param), HIWORD(1Param));
InvalidateRect(hWnd, &rectKeyboard, TRUE);
break;

case WM_KEYUP:
wsprintf(KeyboardText, "WM_KEYUP: %x, %x, %x",
wParam, LOWORD(1Param), HIWORD(1Param));
InvalidateRect(hWnd, &rectKeyboard, TRUE);
break;

4.2.9 Add the WM_CHAR Case

Add a WM_CHAR case to process ANSI-character input. Add the following
statements to the window function:

case WM_CHAR:
wsprintf(CharacterText, "WM_CHAR: %c, %x, %x",
wParam, LOWORD(1Param), HIWORD(1Param));
InvalidateRect(hWnd, &rectCharacter, TRUE);
break;

4.2.10 Add the WM_MOUSEMOVE Case

Add a WM_MOUSEMOVE case to process mouse-motion messages. Add the
following statements to the window function:

case WM_MOUSEMOVE:
wsprintf(MouseText, "WM_MOUSEMOVE: %x, %d, %d",
wParam, LOWORD(1Param), HIWORD(1Param));
InvalidateRect(hWnd, &rectMouse, TRUE);
break;

4.2.11 Add the WM_LBUTTONUP and WM_LBUTTONDOWN Cases

Add the WM_LBUTTONUP and WM_LBUTTONDOWN cases to process
mouse-button input messages. Add the following statements to the window
function:

case WM_LBUTTONDOWN:
wsprintf(ButtonText, "WM_LBUTTONDOWN: %x, %d, %d",
wParam, LOWORD(1Param), HIWORD(1Param));
InvalidateRect(hWnd, &rectButton, TRUE);
break;

4-12 Guide to Programming

case WM_LBUTTONUP:
wsprintf(ButtonText, "WM_LBUTTONUP: %x, %d, %d",
wParam, LOWORD(1Param), HIWORD(1Param));
InvalidateRect(hWnd, &rectButton, TRUE);
break;

4.2.12 Add the WM_LBUTTONDBLCLK Case

Add a WM_LBUTTONDBLCLK case to process mouse-button input messages.
Add the following statements to the window function:

case WM_LBUTTONDBLCLK:
wsprintf(ButtonText, "WM_LBUTTONDBLCLK: %x, %d, %d",
wParam, LOWORD(1Param), HIWORD(1Param));
InvalidateRect(hWnd, &rectButton, TRUE);
break;

4.2.13 Add the WM_TIMER Case

Add a WM_TIMER case to process timer messages. Add the following state-
ments to the window function:

case WM_TIMER:
wsprintf(TimerText, "WM_TIMER: %d seconds”,
nTimerCount += 5);
InvalidateRect(hWnd, &rectTimer, TRUE);
break;

4.2.14 Add the WM_HSCROLL and WM_VSCROLL Cases

Add the WM_HSCROLL and WM_VSCROLL cases to process scroll-bar
messages. Add the following statements to the window function:

case WM_HSCROLL:
case WM_VSCROLL:
strcpy(HorzOrVertText,
(message == WM_HSCROLL) ? "WM_HSCROLL" : "WM_VSCROLL");
strcpy(ScrollTypeText,
(wParam == SB_LINEUP) ? "SB_LINEUP" :
(wParam == SB_LINEDOWN) ? "SB_LINEDOWN" :

(wParam == SB_PAGEUP) ? "SB_PAGEUP" :

(wParam == SB_PAGEDOWN) ? "SB_PAGEDOWN" :

(wParam == SB_THUMBPOSITION) ? "SB_THUMBPOSITION" :
(wParam SB_THUMBTRACK) ? "SB_THUMBTRACK" :

[
[

(wParam SB_ENDSCROLL) ? "SB_ENDSCROLL" : "unknown");

Keyboard and Mouse Input 4-13

wsprintf(ScrollText, "%s: %s, %x, %x",
(LPSTR)HorzOrVertText,
(LPSTR)Scrol1TypeText,
LOWORD(1Param),

HIWORD(1Param));

InvalidateRect(hWnd, &rectScroll, TRUE);

break;

4.2.15 Add the WM_PAINT Case

You need to display the current state of the mouse, keyboard, and timer. The
most convenient way to do this is to use the WM_PAINT message to display the
states. Your application only repaints the parts of its client area that need
repainting.

Add the following statements to the window function:

case WM_PAINT:
hDC = BeginPaint (hWnd, &ps);

if (IntersectRect(&rect, &rectMouse, &ps.rcPaint))
TextOut(hDC, rectMouse.left, rectMouse.top,
MouseText, strlen(MouseText));
if (IntersectRect(&rect, &rectButton, &ps.rcPaint))
TextOut(hDC, rectButton.left, rectButton.top,
ButtonText, strlen(ButtonText));
if (IntersectRect(&rect, &rectKeyboard, &ps.rcPaint))
TextOut(hDC, rectKeyboard.left, rectKeyboard.top,
KeyboardText, strlen(KeyboardText));
if (IntersectRect(&rect, &rectCharacter, &ps.rcPaint))
TextOut(hDC, rectCharacter.left, rectCharacter.top,
CharacterText, strlen(CharacterText));
if (IntersectRect(&rect, &rectTimer, &ps.rcPaint))
TextOut(hDC, rectTimer.left, rectTimer.top,
TimerText, strien(TimerText));
if (IntersectRect(&rect, &rectScroll, &ps.rcPaint))
TextOut(hDC, rectScroll.left, rectScroll.top,
Scrol1Text, strlen(ScrollText));

EndPaint(hWnd, &ps);
break;

4.2.16 Compile and Link

You can compile and link the Input application without changing the make file.
Once the application is compiled, start Windows and then the Input application.
To test the application, press keys on the keyboard, click the mouse button, move
the mouse, and use the scroll bars. The application should look like Figure 4.1:

4-14 Guide to Programming

Input displays text when it receives
[mouse, keyboard, or timer messages.

b Input Sample Application v|a
Help

WM_MOUSEMOVE: 0, 254, 179
WM_LBUTTONUP: 0, 38, 71
WM_KEYUP: 47, 1, c022

WM_CHAR: g, 1, 22

WM_VSCROLL: SB_ENDSCROLL, 81, 0
WM_TIMER: 25 seconds

]

Figure 4.1 The Input Application’s Window

4.3 Summary

This chapter explained how a Windows application receives input from the user.
All user input goes first to Windows, which then translates the input to an input
message and forwards it to the appropriate application. The application can re-
cieve input messages either directly, through a window function’s four argu-
ments, or indirectly, via the application queue.

This chapter also described the different types of input messages and explained
how to respond to each type.

For more information on topics related to input, see the following:

Topic Reference

The Windows Guide to Programming: Chapter 1, “An Overview
message-based pro- of the Windows Environment”

gramming model

Using the cursor for Guide to Programming: Chapter 6, “The Cursor,
mouse and keyboard the Mouse, and the Keyboard”

input

Menus and menu input Guide to Programming: Chapter 7, “Menus”

Scroll-bar controls Guide to Programming: Chapter 8, “Controls”

Topic

Input functions

Input messages

Keyboard and Mouse Input 4-15

Reference

Reference, Volume 1: Chapter 1, “Window
Manager Interface Functions,” and Chapter 4,
“Functions Directory”

Reference, Volume 1: Chapter 5, “Messages Over-
view” and Chapter 6, “Messages Directory”

Chapter Icon S

A typical Windows application uses an icon to represent itself when its main
window is minimized.

This chapter covers the following topics:

® What an icon is

® Creating and using your own predefined icons

= Specifying an icon for your application’s window class
= Changing your application’s icon “on the fly”

® Displaying an icon in a dialog box

This chapter also explains how to create a sample application, Icon, that il-
lustrates many of these concepts.

5.1 What is an Icon?

To the user, an icon is a small graphic image that represents an application when
that application’s main window is minimized. For example, Microsoft Paintbrush
uses an icon that looks like a painter’s palette to represent its minimized window.
Icons are also used in message and dialog boxes.

To the application, an icon is a type of resource. Before resource compilation,
each icon is a separate file that contains a set of bitmap images. The images may
be similar in appearance, but each is targeted for a different display device.
When the application wants to use an icon, it simply requests the icon resource
by name. Windows then decides which of that icon’s images is most appropriate
for the current display. Because Windows handles this decision, the application
doesn’t need to check the display type or determine which icon image is best
suited for the current display. Figure 5.1 illustrates what happens when an appli-
cation requests an icon resource.

5-2 Guide to Programming

The application requests the —
icon resource by its name, “Mylcon”.

Mylcon

Windows looks at the Mylcon Mylcon resource
resource and finds that it provides
four different images for four
different display devices.

Windows displays the icon image .~ 1)
that best fits the user’s .-~ /
display type. 7

L
-~

EGA VGA Monochrome Custom
Display Display Display Display

Figure 5.1 Using an Icon

5.1.1 Using Built-In Icons

Windows provides several built-in icons. You can use any of these icons in your
applications. Windows uses several built-in icons in message boxes to indicate
notes, cautions, warnings, and errors.

To use a built-in icon, you must first load it. To do this, you retrieve a handle to it
by using the LoadIcon function. The first argument to the function must be
NULL, indicating that you are requesting a built-in icon. The second argument
identifies the icon you want. For example, the following statement loads the built-
in “exclamation” icon:

hHandIcon = LoadIcon(NULL, IDI_EXCLAMATION);

After loading a built-in icon, your application can use it. For example, the appli-
cation could specify the icon as the class icon for a particular window class. Or,
you could include the icon in a message box. For more information, see Section
5.3, “Specifying a Class Icon,” and Section 5.4, “Displaying Your Own Icons.”

lcons 5-3
ﬁ

5.2 Using Your Own Icons

Using an icon requires three steps:

1. Create the icon file with the SDKPaint tool.

2. Define the icon resource by using an ICON statement in your application’s
resource script file.

3. Load the icon resource, when needed, by using the LoadIcon function in
your application code.

After loading an icon, you can use it; for example, you can then specify it as the
class icon.

The following sections explain each step in detail.

9.2.1 Creating an Icon File

An icon file contains one or more icon images. You use the SDKPaint tool to
paint the images and save them in an icon file.

Follow the directions given in Tools for creating and saving an icon. The recom-
mended file extension for an icon file is .ICO.

9.2.2 Defining the lcon Resource

Once you have an icon file, you must define that icon in your application’s
resource script (.RC) file.

To define an icon resource, add an ICON statement to your resource script file.
The ICON statement defines a name for the icon, and specifies the icon file that
contains the icon. For example, the following resource statement adds the icon
named “MylIcon” to your application’s resources:

MyIcon ICON MYICON.ICO

The filename MYICON.ICO specifies the file that contains the images for the
icon named “MylIcon.” When the resource script file is compiled, the icon images
will be copied from the file MYICON.ICO into your application’s resources.

9.2.3 Loading the Icon Resource

Once you have created an icon file and defined the icon resource in the .RC file,
your application can load the icon from its resources.

To load the icon from your resources, you use the LoadIcon function. The
LoadIcon function takes the application’s instance handle and the icon’s name,

5-4 Guide to Programming

5.3 Specifying

5.4 Displaying

and returns a handle to the icon. The following example loads “MyIcon” and
stores its handle in the variable hMylIcon.

hMyIcon = LoadIcon (hInstance, "MyIcon");

After loading it, the application can display the icon.

a Class Icon

A “class icon” is an icon that represents a particular window class whenever a
window in that class is minimized. You specify a class icon by supplying an icon
handle in the hIcon field of the window-class structure before registering the
class. Once the class icon is set, Windows automatically displays that icon when
any window you create using that window class is minimized.

The following example shows a definition of the window class “wc” before
registering the class. In this definition, the field hIcon is set to the handle re-
turned by LoadIcon.

wc.style = NULL;
wc.lpfnWndProc = MainWndProc;
wc.cbClsExtra = @;

wc.cbWndExtra = @;

wc.hInstance = hInstance;

@ wc.hIcon = LoadIcon (NULL, IDI_APPLICATION);
wc.hCursor = LoadCursor (NULL, IDC_ARROW);
wc.hbrBackground = COLOR_WINDOW + 1;
wc.1pszMenuName = NULL;

wc.1pszClassName = "Generic";

© The LoadIcon function returns a handle to the built-in application icon iden-
tified by IDI_APPLICATION. If you minimize a window that has this class,
you will see a white rectangle with a black border. This is the built-in applica-
tion icon.

Your Own Icons

Windows displays a class icon when the application is minimized, and removes it
when the application is maximized. All the application does is specify it as the
class icon. This meets the needs of most applications, since most applications do
not need to display additional information to the user when the application is min-
imized.

However, sometimes your application may need to display its icon itself, instead
of letting Windows display a prespecified class icon. This is particularly useful

lcons 5-5
E

when you want your application’s icon to be dynamic, like the icon in the Clock
application. (The Clock application continues to show the time even when it has
been minimized.) Windows lets applications paint within the client area of an
iconic window, so that they can paint their own icons.

If you want your application to display its own icon:

1. In the window class structure, set the class icon to NULL before registering
the window class. Use the following statement:

wc.hIcon = NULL;

This step is required because it signals Windows to continue sending
WDM_PAINT messages, as necessary, to the window function even though the
window has been minimized.

2. Add a WM_PAINT case to your window function that draws within the
icon’s client area if the window receives a WM_PAINT message when the
window is iconic (minimized). Use the foliowing statements:

PAINTSTRUCT ps;
HDC hDC;

case WM_PAINT:

hDC = BeginPaint(hWnd, &ps);

if (IsIconic(hWnd))
{
/* Qutput functions for iconic state */
}

else
{
/* Qutput functions for non-iconic state */
}

EndPaint(hWnd, &ps);

break;

Applications need to determine whether the window is iconic, since what they
paint in the icon may be different from what they paint in the open window. The
IsIconic function returns TRUE if the window is iconic.

The BeginPaint function returns a handle to the display context of the icon’s
client area. BeginPaint takes the window handle, hWnd, and a long pointer to
the paint structure, ps. BeginPaint fills the paint structure with information about
the area to be painted. As with any painting operation, after each call to Begin-
Paint, the EndPaint function is required. EndPaint releases any resources that
BeginPaint retrieved and signals the end of the application’s repainting of the
client area.

5-6 Guide to Programming

5.5 Displaying

You can retrieve the size of the icon’s client area by using the rcPaint field of
the paint structure. For example, to draw an ellipse that fills the icon, you can use
the following statement:

E1lipse(hDC, ps.rcPaint.left, ps.rcPaint.top,
ps.rcPaint.right, ps.rcPaint.bottom);

You can use any GDI output functions to draw the icon, including the TextOut
function. The only limitation is the size of the icon, which varies from display to
display, so make sure that your painting does not depend on a specific icon size.

an Icon in a Dialog Box

You can place icons in dialog boxes by using the ICON control statement in the
DIALOG statement. You have already seen an example of a DIALOG state-
ment in the About dialog box described with the Generic application. The
DIALOG statement for that box looks like this:

AboutBox DIALOG 22, 17, 144, 75
STYLE DS_MODALFRAME | WS_CAPTION | WS_SYSMENU
CAPTION "About Icon"

BEGIN
CTEXT "Microsoft Windows" -1, 37, 5, 68, 8
CTEXT "Generic Application” -1, 0, 14, 144, 8
CTEXT "Version 3.0" -1, 38, 34, 64, 8
DEFPUSHBUTTON "OK" I1DOK, 53, 59, 32, 14, WS_GROUP
END

You can add an icon to the dialog box by inserting the following ICON state-
ment immediately after the DEFPUSHBUTTON statement:

ICON "MyIcon", -1, 25, 14, 16, 21

When an icon is added to a dialog box, it is treated like any other control. It must
have a control ID, a position for its upper-left corner, a width, and a height. In
this example, —1 is the control ID, 25 and 14 specify the location of the icon in
the dialog box, and 16 and 21 specify the height and width of the icon, respec-
tively. However, Windows ignores the height and width, sizing the icon automati-
cally.

The name “Mylcon” identifies the icon you want to use. The icon must be de-
fined in an ICON statement elsewhere within the resource script file. For ex-
ample, the following statement defines the icon “MyIcon.”

MyIcon ICON MYICON.ICO

lecons 5-7
“

9.6 A Sample Application: Icon

This sample application shows how to incorporate icons in your applications, in
particular, how to do the following:

m Use a custom icon as the class icon.

® Use an icon in the About dialog box.

To create the Icon application, copy and rename the source files of the Generic
application, then do the following:
1. Add an ICON statement to the resource script file.

2. Add an ICON control statement to the DIALOG statement in the resource
script file.

3. Load the custom icon and use it to set the class icon in the initialization func-
tion.

4. Modify the make file to cause the Resource Compiler to add the icon to the
application’s executable file.

5. Compile and link the application.

This sample assumes that you have created an icon using SDKPaint, and have
saved the icon in a file named MYICON.ICO.

NOTE Rather than typing the code provided in the following sections, you might find it
more convenient to simply examine and compile the sample source files provided with the
SDK.

5.6.1 Add an ICON Statement

Add an ICON statement to your resource script file. Insert the following line
at the beginning of the resource script file, immediately after the #include
directives:

MyIcon ICON MYICON.ICO

5.6.2 Add an ICON Control Statement

Add an ICON control statement to the DIALOG statement. Insert the following
line immediately after the DEFPUSHBUTTON statement:

ICON "MyIcon", -1, 25, 14, 16, 21

5-8 Guide to Programming

5.6.3 Set the Class Icon

Set the class icon by adding the following statement to the initialization function
in the C-language source file:

wc.hIcon = LoadIcon (hInstance, "MyIcon");

5.6.4 Add MYICON.ICO to the Make File

In the make file, add the file MYICON.ICO to the list of files on which
ICON.RES is dependent. The relevant lines in the make file should look like the
following:

ICON.RES: ICON.RC ICON.H MYICON.ICO
RC -r ICON.RC

This ensures that, if the file MYICON.ICO changes, ICON.RC will be recom-
piled to form a new ICON.RES file.

No other changes are required.

5.6.5 Compile and Link

Recompile and link the Icon application. When the application is recompiled,
start Windows and the Icon application. Now, if you choose the About com-
mand, Icon displays the About dialog box, which now contains an icon.

5.7 Summary

This chapter explained how to create and use icons in your application. An icon
is a small graphic image that can represent an application when that application
is minimized. You can use one of Windows’ built-in icons, or you can use the
SDKPaint tool to create your own icons. You can specify an icon when you
register a window class; then, Windows will automatically display that icon
whenever a window in that class is minimized. Your application can also display
icons itself, using the BeginPaint and EndPaint functions.

For more information on topics related to icons, see the following:

Topic Reference

LoadIcon, IsIconic, BeginPaint, Reference, Volume 1: Chapter 4,
EndPaint, and TextOut functions “Functions Directory”
Resource script statements Reference, Volume 2: Chapter 8,

“Resource Script Statements”

lcons 5-9

m

Topic

Using SDKPaint

Using the Dialog Editor to add an
icon to a dialog box

Reference

Tools: Chapter 4, “Designing Im-
ages: SDKPaint”

Tools: Chapter 5, “Designing Dialog
Boxes: The Dialog Editor”

Chapter | The Cursor, the Mouse, and
6 the Keyboard

The cursor is a special bitmap that shows the user where actions initiated by the
mouse will take place. In most Windows applications, the user makes selections,
chooses commands, and directs other actions by using either the mouse or the
keyboard.

This chapter covers the following topics:

m Controlling the shape of the cursor
®m Displaying the cursor
® Letting the user select information using the mouse

m Letting the user move the cursor using the keyboard

This chapter also explains how to create a sample application, Cursor, that il-
lustrates some of these concepts.

6.1 Controlling the Shape of the Cursor

Since no one cursor shape can satisfy the needs of all applications, Windows lets
your application change the shape of the cursor to suit its own needs.

In order to use a particular cursor shape, you must first retrieve a handle to it
using the LoadCursor function. Once your application has loaded a cursor, it
can use that cursor shape whenever it needs to.

Your application can control the shape of the cursor using either of two methods:

® It can take advantage of the built-in cursor shapes that Windows provides.

® It can use its own customized cursor shapes.

The following sections explain each method.

6.1.1 Using Built-In Cursor Shapes

Windows provides several built-in cursor shapes. These include the arrow, hour-
glass, I-beam, and cross-hair cursors. Most of the built-in cursor shapes have

6-2 Guide to Programming

specialized uses. For example, the I-beam cursor is normally used when the user
is editing text; the hourglass cursor is used to indicate that a lengthy operation is
in progress, such as reading a disk file.

To use a built-in cursor, use the LoadCursor function to retrieve a handle to the
built-in cursor. The first argument to Load Cursor must be NULL (indicating
that a built-in cursor is requested); the second argument must specify the cursor
to load. The following example loads the I-beam cursor, IDC_IBEAM, and as-
signs the resulting cursor handle to the variable hCursor.

hCursor = LoadCursor(NULL, IDC_IBEAM);

Once you have loaded a cursor, you can use it. For example, you could display
the I-beam cursor to indicate that the user is currently editing text. Section 6.2,
“Displaying the Cursor,” explains methods for displaying the cursor.

6.1.2 Using Your Own Cursor Shapes

To create and use your own cursor shapes, follow these steps:

1. Create the cursor shape itself by using the SDKPaint tool.

2. Define the cursor in your resource script file by using the CURSOR state-
ment.

3. Load the cursor by using the LoadCursor function.
4. Display the cursor using one of the techniques described in Section 6.2, “Dis-

playing the Cursor.”

The following sections explain each step.

Creating a Cursor Shape

The first step is to create the cursor shape itself. You do this by using SDKPaint,
which lets you see an actual-size version of the cursor shape while you’re editing
it.

When you have created the cursor, save it in a cursor file. The recommended ex-
tension for cursor files is .CUR.

For information about using SDKPaint, see Tools.

Adding the Cursor to Your Application Resources

Next, add a CURSOR statement to your resource script file. The CURSOR state-
ment specifies the file that contains the cursor, and defines a name for the cursor.
The application will use this cursor name when loading the cursor. The following
is an example of a CURSOR statement:

The Cursor, the Mouse, and the Keyboard 6-3

bullseye CURSOR BULLSEYE.CUR

In this example, the name of the cursor is “bullseye”, and the cursor is in the file
BULLSEYE.CUR.

Loading the Cursor Resource

In your application code, retrieve a handle to the cursor using the Load Cursor
function. For example, the following code loads the cursor resource named
“bullseye” and assigns its handle to the variable hCursor:

hCursor = LoadCursor(hInstance, (LPSTR) "bullseye");

In this example, the Load Cursor function loads the cursor from the application’s
resources. The instance handle, hInstance, identifies the application’s resources
and is required. The name “bullseye” identifies the cursor. It is the same name
given in the resource script file.

6.2 Displaying the Cursor

Once you have loaded a cursor shape, you can display it using one of two
methods:

® Specifying it as the “class cursor” for all windows in a window class
= Explicitly setting the cursor shape when the cursor moves within the client

area of a particular window

The following sections explain each method.

6.2.1 Specifying a Class Cursor

The “class cursor” defines the shape the cursor will take when it enters the client
area of a window that belongs to that window class. To specify a class cursor,
load the cursor you want, and assign its handle to the hCursor field of the
window-class structure before registering the class. For example, to use the built-
in arrow cursor (IDC_ARROW) in your window, add the following statement to
your initialization function:

wc.hCursor = LoadCursor(NULL, IDC_ARROW);

For each window created using this class, the built-in arrow cursor will appear au-
tomatically when the user moves the cursor into the window.

6-4 Guide to Programming

6.2.2 Explicitly Setting the Cursor Shape

Your application does not have to specify a class cursor. Instead, you can set the
hCursor field to NULL to indicate that the window class has no class cursor. If a
window has no class cursor, Windows will not automatically change the shape of
the cursor when it moves into the client area of the window. This means that your
application will need to display the cursor itself.

To use any cursor, whether built-in or custom, you must load it first. For ex-
ample, to load the custom cursor “MyCursor” (defined in your application’s
resource script file) add the following statements to your initialization function:

static HCURSOR hMyCursor; /* static variable */
hMyCursor = LoadCursor (hInstance, (LPSTR) "MyCursor");

Then, to change the cursor shape, use the SetCursor function to set the shape
each time the cursor moves in the client area. Since Windows sends a
WM_MOUSEMOVE message to the window on each cursor movement, you can
manage the cursor by adding the following statements to the window function:

case WM_MOUSEMOVE:
SetCursor(hMyCursor);
break;

NOTE f your application needs to display the cursor itself, you must set the class-cursor
field to NULL. Otherwise, Windows will attempt to set the cursor shape on each
WM_MOUSEMOVE message, even though your application is also setting the cursor shape.
This will result in a noticeable flicker as you move the cursor through the window.

6.2.3 Example: Displaying the Hourglass on a Lengthy Operation

Whenever your application begins a lengthy operation, such as reading or writing
a large block of data to a disk file, you should change the shape of the cursor to
the hourglass. This lets users know that a lengthy operation is in progress and
that they should wait before attempting to continue their work. Once the opera-
tion is complete, your application should restore the cursor to its previous shape.

To change the cursor to an hourglass, use the following statements:

@ HCURSOR hSaveCursor;
HCURSOR hHourGlass;

hHourGlass = LoadCursor(NULL, IDC_WAIT);

The Cursor, the Mouse, and the Keyboard 6-5

@ SetCapture(hWnd);
© nhSaveCursor = SetCursor(hHourGlass);

/* Lengthy operation */

@ setCursor(hSaveCursor);
© ReleaseCapture();

In this example:

@ The application defines the variables that will be used to store the cursor han-
dles. Both variables are type HCURSOR.

® The application first captures the mouse input, using the SetCapture func-
tion. This keeps the user from attempting to use the mouse to carry out work
in another application while the lengthy operation is in progress. When the
mouse input is captured, Windows directs all mouse input messages to the
specified window, regardless of whether the mouse is in that window. The
application can then process the messages as appropriate.

® The application then changes the cursor shape using the SetCursor function.
SetCursor returns a handle to the previous cursor shape, so that the shape can
be restored later. The application saves this handle in the variable hSave-
Cursor.

O After the lengthy operation is complete, the application restores the previous
cursor shape.

©® The ReleaseCapture function releases the mouse input.

6.3 Letting the User Select Information with the Mouse

The mouse is a hardware device that lets the user move the cursor and enter
simple input by pressing a button. In a typical Windows application, the user per-
forms many types of tasks with the mouse; for example, choosing commands
from a menu, selecting text or graphics, or directing scrolling operations. For
most of these tasks, Windows automatically handles the mouse input; for ex-
ample, when the user chooses a menu command, Windows automatically sends
the application a message that contains the command ID.

However, one common task, selection of information within the client area, must
be handled by the application itself. In order to let the user select such informa-
tion using the mouse, the application must perform the following tasks:

6-6 Guide to Programming

m Start processing the selection.

When the user presses the mouse button to start selecting information, the
application must note the location of the cursor and temporarily capture all
mouse input to ensure that other applications do not interfere with the selec-
tion process.

®m Provide visual feedback during the selection.

While the user drags the mouse across the screen, the application should
show the user what information is currently being selected. For example,
some applications highlight selected information; others draw a dotted
rectangle around it.

= Complete the selection.

When the user releases the mouse button, the application must note the final
location of the cursor and signal the end of the selection process.

When the selection process is complete, the user can then choose an action to per-
form on the selected information. For example, in a word processor, the user
might select several words, then choose a command that changes the selected
text to a different font. The following sections discuss each step in more detail,
and explain how to let the user select graphics in a window’s client area.

NOTE The mouse is just one of many possible system pointing devices. Other pointing
devices such as graphics tablets, joysticks, and light pens may operate differently but still
provide input identical to that of a mouse. The following examples can be used with these
devices as well. Remember that when a pointing device is present, Windows automatically
controls the position and shape of the cursor as the user moves the pointing device.

6.3.1 Starting a Graphics Selection

Because graphics can be virtually any shape, they are potentially more difficult
to select than simple text. The simplest approach to selecting graphics is to let the
user “stretch” a selection rectangle so that it encloses the desired information.

This section explains how to use the “rubber rectangle” method of selecting
graphics. You can use the messages WM_LBUTTONDOWN, WM_LBUT-
TONUP, and WM_MOUSEMOVE to create the rectangle. This lets the user
create the selection by choosing a point, pressing the left button, and dragging to
another point before releasing. While the user drags the mouse, the application
can provide instant feedback by inverting the border of the rectangle described
by the starting and current points.

The Cursor, the Mouse, and the Keyboard 6-7

For this method, you start the selection when you receive the message
WM_LBUTTONDOWN. You need to do three things: capture the mouse input,
save the starting (original) point, and save the current point, as follows:

BOOL bTrack = FALSE; /* these are global variables */
int OrgX = @, OrgY = 0;

int PrevX = @, Prevy =
int X =0, Y =0;

/H

© case WM_LBUTTONDOWN:
bTrack = TRUE;
PrevX = LOWORD(1Param);

PrevY = HIWORD(1Param);
OrgX = LOWORD(1Param);
OrgY = HIWORD(1Param);

® InvalidateRect (hWnd, NULL, TRUE);
UpdateWindow (hWnd);

/* Capture all input even if the mouse goes outside of window */

© SetCapture(hWnd);
break;

© When the application receives the WM_LBUTTONDOWN message, the
bTrack variable is set to TRUE to indicate that a selection is in progress. As
with any mouse message, the /Param parameter contains the current x- and y-
coordinates of the mouse in the low- and high-order words, respectively.
These are saved as the origin x and y values, OrgX and OrgY, as well as the
previous values, PrevX and PrevY. The PrevX and PrevY variables will be
updated immediately on the next WM_MOUSEMOVE message. The OrgX
and OrgY variables remain unchanged and will be used to determine a corner
of the bitmap to be copied. (The variables bTrack, OrgX, OrgY, PrevX, and
PrevY must be global variables.)

® To provide immediate visual feedback in response to the WM_LBUTTON-
DOWN message, the application invalidates the screen and notifies the
window function that it needs to repaint the screen. It does this by calling
InvalidateRect and UpdateWindow.

® The SetCapture function directs all subsequent mouse input to the window
even if the cursor moves outside of the window. This ensures that the selec-
tion process will continue uninterrupted.

6-8 Guide to Programming

0 —

Respond to the WM_PAINT message by redrawing the invalidated portions of
the screen:

case WM_PAINT:
{
PAINTSTRUCT ps;
HDC hDC;

hDC = BeginPaint (hWnd, &ps);
if (OrgX != PrevX || OrgY != PrevY) {
MoveTo(hDC, OrgX, OrgY);
LineTo(hDC, OrgX, PrevY);
LineTo(hDC, PrevX, PrevY);
LineTo(hDC, PrevX, OrgY);
LineTo(hDC, OrgX, OrgY¥);
}
EndPaint (hWnd, &ps);
}
break;

In some applications, you might want to be able to extend an existing selection.
One way to do this is to have the user hold the SHIFT key when making a selec-
tion. Since the wParam parameter contains a flag that specifies whether the SHIFT
key is being pressed, it is easy to check for this, and to extend the selection as
necessary. In this case, extending a selection means preserving its previous OrgX
and OrgY values when you start it. To do this, change the WM_LBUTTON-
DOWN case so it looks like this:

case WM_LBUTTONDOWN:
bTrack = TRUE;
PrevX = LOWORD(1Param);
PrevY = HIWORD(1Param);
if (!(wParam & MK_SHIFT)) { /* If shift key is
not pressed */

OrgX
OrgY

LOWORD(1Param);
HIWORD(1Param);

[

}
InvalidateRect (hWnd, NULL, TRUE);
UpdateWindow (hWnd);

/* Capture all input even if the mouse goes
outside the window */

SetCapture(hWnd);
break;

The Cursor, the Mouse, and the Keyboard 6-9

6.3.2 Showing the Selection

As the user makes the selection, you need to provide feedback about his or her
progress. You can do this by drawing a border around the rectangle by using the
LineTo function on each new WM_MOUSEMOVE message. To prevent losing
information already on the display, you need to draw a line that inverts the screen
rather than drawing over it. You can do this by using the SetROP2 function to
set the binary raster mode to R2_NOT. The following statements perform this
function:

case WM_MOUSEMOVE:

{

RECT
int
int

if (

rectClient;
NextX;
NextY;
bTrack) {
NextX = LOWORD(1Param);
NextY = HIWORD(1Param);

/* Do not draw outside the window's client area */

GetClientRect (hWnd, &rectClient);

if (NextX < rectClient.left) {
NextX = rectClient.left;

} else if (NextX >= rectClient.right) {
NextX = rectClient.right - 1;

}

if (NextY < rectClient.top) {
NextY = rectClient.top;

} else if (NextY >= rectClient.bottom) ({
NextY = rectClient.bottom - 1;

}

/* If the mouse position has changed, then clear the */
/* previous rectangle and draw the new one. */

if ((NextX != PrevX) || (NextY != PrevY)) {
hDC = GetDC(hWnd);
SetROP2(hDC, R2_NOT); /* Erases the previous box */
MoveTo(hDC, OrgX, OrgY);
LineTo(hDC, OrgX, PrevY);
LineTo(hDC, PrevX, PrevY);
LineTo(hDC, PrevX, OrgY);
LineTo(hDC, OrgX, OrgY);

6-10 Guide to Programming

}
}
break;

/* Get the current mouse position */

PrevX = NextX;

PrevY = NextY;

MoveTo(hDC, OrgX, OrgY); /* Draws the new box */
LineTo(hDC, OrgX, PrevY);

LineTo(hDC, PrevX, PrevY);

LineTo(hDC, PrevX, OrgY¥);

LineTo(hDC, OrgX, OrgY);

ReleaseDC(hWnd, hDC);

The application processes the WM_MOUSEMOVE message only if bTrack is
TRUE (that is, if a selection is in progress). The purpose of the WM_MOUSE-
MOVE processing is to remove the border around the previous rectangle and
draw a new border around the rectangle described by the current and original
positions. Since the border is actually the inverse of what was originally on the
display, inverting again restores it completely. The first four LineTo functions re-
move the previous border. The next four draw a new border. Before drawing the
new border, the PrevX and PrevY values are updated by assigning them the cur-
rent values contained in the /Param parameter.

6.3.3 Ending the Selection

Finally, when the user releases the left button, save the final point and signal the
end of the selection process. The following statements complete the selection:

case WM_LBUTTONUP:

bTrack = FALSE; /* No longer carrying out a selection */
ReleaseCapture(); /* Release hold on mouse input */

X = LOWORD(1Param); /* Save the current value */

Y = HIWORD(1Param);

break;

When the application receives a WM_LBUTTONUP message, it immediately
sets bTrack to FALSE to indicate that selection processing has been completed.
It also releases the mouse capture by using the ReleaseCapture function. It then
saves the current mouse position in the variables, X and Y. This, together with
the selection-origin information saved on WM_LBUTTONDOWN, records the
selection the user has made. The application can now operate on the selection,
and can redraw the selection rectangle when necessary.

The Cursor, the Mouse, and the Keyboard 6-11

For some applications, you might want to check the final cursor position to make
sure it represents a point to the lower right of the original point. This is the way
most rectangles are described—by their upper-left and lower-right corners.

The ReleaseCapture function is required since a corresponding SetCapture
function was called. In general, you should release the mouse immediately after
the mouse capture is no longer needed.

6.4 Using the Cursor with the Keyboard

Because Windows does not require a pointing device, applications should pro-
vide the user with a way to duplicate mouse actions with the keyboard. To allow
the user to move the cursor using the keyboard, use the SetCursorPos, Set-
Cursor, GetCursorPos, ClipCursor, and ShowCursor functions to display and
move the cursor.

6.4.1 Using the Keyboard to Move the Cursor

You can use the SetCursorPos function to move the cursor directly from your
application. This function is typically used to let the user move the cursor by
using the keyboard.

To move the cursor, use the WM_KEYDOWN message and filter for the virtual-
key values of the direction keys: VK_LEFT, VK_RIGHT, VK_UP, and
VK_DOWN. On each key stroke, the application should update the position of
the cursor. The following example shows how to retrieve the cursor position and
convert the coordinates to client coordinates:

POINT ptCursor; /* these are global variables */
int repeat = 1;

RECT Rect;

case WM_KEYDOWN:
@ if (wParam != VK_LEFT && wParam != VK_RIGHT

&& wParam != VK_UP && wParam != VK_DOWN)
break;
@D GetCursorPos(&ptCursor);

/* Convert screen coordinates to client coordinates */

© ScreenToClient(hWnd, &ptCursor);
O repeat++; /* Increases the repeat rate */

6-12 Guide to Programming

switch (wParam) {

/* Adjust cursor position according to which key was pressed. */
/* Accelerate by adding the repeat variable to the cursor
position. */

case VK_LEFT:
ptCursor.x -= repeat;
break;

case VK_RIGHT:
ptCursor.x += repeat;
break;

case VK_UP:
ptCursor.y -= repeat;
break;

case VK_DOWN:
ptCursor.y += repeat;
break;

default:
return (NULL);

}

/* ensure that cursor doesn't go outside client area */
© GetClientRect(hWnd, &Rect);

® if (ptCursor.x >= Rect.right)
ptCursor.x = Rect.right - 1;

else if (ptCursor.x < Rect.left)
ptCursor.x = Rect.left;

if (ptCursor.y >= Rect.bottom)
ptCursor.y = Rect.bottom - 1;

else if (ptCursor.y < Rect.top)
ptCursor.y = Rect.top;

@ ClientToScreen(hWnd, &ptCursor);

® SetCursorPos(ptCursor.x, ptCursor.y);
break;

case WM_KEYUP:
O repeat = 1; /* Clears the repeat rate */
break;

In this example:

@ The first if statement filters for the virtual-key values of the direction keys
VK_LEFT, VK_RIGHT, VK_UP, and VK_DOWN.

The Cursor, the Mouse, and the Keyboard 6-13

® The GetCursorPos function retrieves the current cursor position. If the
mouse is available, the user could potentially move the cursor with the mouse
at any time; therefore, there is no guarantee that the position values you saved
on the last key stroke are correct.

© The ScreenToClient function converts the cursor position to client coordi-
nates. The application does this for two reasons: mouse messages give the
mouse position in client coordinates, and client coordinates do not need to be
updated if the window moves. In other words, it is convenient to use client
coordinates because the system uses them and because it usually means less
work for the application.

® The repeat variable provides accelerated cursor motion. Advancing the cursor
one unit for each key stroke can be frustrating for users if they need to move
to the other side of the screen. You can accelerate the cursor motion by in-
creasing the number of units the cursor advances when the user holds down a
key. When the user holds down a key, Windows sends multiple WM_KEY-
DOWN messages without matching WM_KEYUP messages. To accelerate
the cursor, you simply increase the number of units to advance on each
WM_KEYDOWN message.

© The GetClientRect function retrieves the current size of the client area and
stores it in the Rect structure. You then use that information to ensure that the
cursor motion remains within the client area.

@ These if statements check the current cursor position to ensure that it is within
the client area. If necessary, the application then adjusts the cursor position.

@ In preparation for the SetCursorPos function, the ClientToScreen function
converts the values in the ptCursor structure from client coordinates to screen
coordinates. Because SetCursorPos requires screen coordinates rather than
client coordinates, you must convert the coordinates before calling SetCur-
sorPos.

(]

The SetCursorPos function moves the cursor to the desired location.

(]

Within the WM_KEYUP case, the application restores the initial value of the
repeat variable when the user releases the key.

6.4.2 Using the Cursor when No Mouse Is Available

When no mouse is available, the application must display and move the cursor in
response to keyboard actions. To determine whether a mouse is present, you can
use the GetSystemMetrics function and specify the SM_MOUSEPRESENT
option:

GetSystemMetrics(SM_MOUSEPRESENT);

This function returns TRUE if the mouse is present.

6-14 Guide to Programming

You will need to display the cursor and update the cursor position when the appli-
cation is activated, and hide the cursor when the application is deactivated. The
following statements carry out both activation functions:

case WM_ACTIVATE:
if (!GetSystemMetrics(SM_MOUSEPRESENT)) {
if (!HIWORD(1Param)) {
if (wParam) {
SetCursor(hMyCursor);
ClientToScreen(hWnd, &ptCursor);
SetCursorPos(ptCursor.x, ptCursor.y);
}
ShowCursor(wParam) ;
}
}
break;

The cursor functions are called only if the system has no mouse; that is, if the
GetSystemMetrics function returns FALSE. Since Windows positions and up-
dates the cursor automatically if a mouse is present, the cursor functions, if car-
ried out, would disrupt this processing.

The next step is to determine whether the window is iconic. The cursor must not
be displayed or updated if the window is an icon. Ina WM_ACTIVATE
message, the high-order word is nonzero if the window is iconic, so the cursor
functions are called only if this value is zero.

The final step is to check the wParam parameter to determine whether the
window is being activated or deactivated. This parameter is nonzero if the
window is being activated. When a window is activated, the SetCursor function
sets the shape and the SetCursorPos function positions it. The ClientToScreen
function converts the cursor position to screen coordinates as required by the Set-
CursorPos function. Finally, the ShowCursor function shows or hides the
cursor depending on the value of wParam.

When the system has no mouse installed, applications must be careful when
using the cursor. In general, applications must hide the cursor when the window
is closed, destroyed, or relinquishes control. If an application fails to hide the
cursor, it prevents subsequent windows from using the cursor. For example, if an
application sets the cursor to the hourglass, displays the cursor, then relinquishes
control to a dialog box, the cursor remains on the screen (possibly in a new
shape), but cannot be used by the dialog box.

6.5 A Sample Application: Cursor

This sample application, Cursor, illustrates how to incorporate cursors and how
to use the mouse and keyboard in your applications. It illustrates the following:

The Cursor, the Mouse, and the Keyboard 6-15

Using a custom cursor as the class cursor
Showing the hourglass cursor during a lengthy operation
Using the mouse to select a portion of the client area

Using the keyboard to move the cursor

To create the Cursor application, copy and rename the source files of the Generic
application, then make the following modifications:

1.
2.
3.

9.
10.

Add a CURSOR statement to your resource script file.

Add new variables.

Load the custom cursor and use it to set the class cursor in the initialization
function.

. Prepare the hourglass cursor.

. Add a lengthy operation to the window function (for simplicity, use the

ENTER key to trigger the operation).

. Add the WM_LBUTTONDOWN, WM_MOUSEMOVE, and WM_LBUT-

TONUP cases to the window function to support selection.

. Add the WM_KEYDOWN case to the window function to support keyboard-

controlled cursor movement.

. Add the WM_PAINT case to the window function to redraw the client area

after it has been invalidated.
Add BULLSEYE.CUR to the make file.

Compile and link the application.

This sample assumes that your system has a mouse; if your system does not, the
application might not operate as described. However, it is a fairly straightforward
task to adjust the sample to work with both the mouse and the keyboard or with
only the keyboard.

NOTE Rather than typing the code provided in the following sections, you might find it

more convenient to simply compile and execute the sample source files provided with the
SDK.

6-16 Guide to Programming

6.5.1 Add the CURSOR Statement

To use a custom cursor, you need to create a cursor file using SDKPaint, and
give the name of the file in a CURSOR statement in the resource script file. Add
the following statement to your resource script file:

bullseye CURSOR BULLSEYE.CUR

Make sure that the cursor file, BULLSEYE.CUR, contains a cursor.

6.5.2 Add New Variables

You will need several new variables for this sample application. Place the follow-
ing statements at the beginning of your C-language source file:

char str[255]; /* .general-purpose string buffer */
HCURSOR hSaveCursor; /* handle to current cursor */
HCURSOR hHourGlass; /* handle to hourglass cursor */
BOOL bTrack = FALSE; /* TRUE if left button clicked */
int OrgX = @, OrgY = 0; /* original cursor position */
int PrevX = @, PrevY = @; /* current cursor position */
int X=0, Y =20; /* last cursor position */
RECT Rect; /* selection rectangle */
POINT ptCursor; /* x and y coordinates of cursor */
int repeat = 1; /* repeat count of key stroke */

The hSaveCursor and hHourGlass variables hold the cursor handles to be used
for the lengthy operation. The bTrack variable holds a Boolean flag indicating
whether a selection is in progress. The variables OrgX, OrgY, PrevX, and PrevY
hold the original and current cursor positions as a selection is being made. OrgX
and OrgY, along with the variables X and Y, hold the original and final coordi-
nates of the selection when the selection process is complete. The ptCursor struc-
ture holds the current position of the cursor in the client area. This is updated
when the user presses a DIRECTION key. The Rect structure holds the current di-
mensions of the client area and is used to make sure the cursor stays within the
client area. The repeat variable holds the current repeat count for each keyboard
motion.

6.5.3 Set the Class Cursor

To set the class cursor, you need to modify a statement in the initialization func-
tion. Specifically, you need to assign the cursor handle to the hCursor field of
the window-class structure. Make the following change in the C-language source
file. Find this line:

wc.hCursor = LoadCursor(NULL, IDC_ARROW);

The Cursor, the Mouse, and the Keyboard 6-17

Change it to the following:

wc.hCursor = LoadCursor(hInstance, "bullseye");

6.5.4 Prepare the Hourglass Cursor

Since you will be using the hourglass cursor during a lengthy operation, you need
to load it. The most convenient place to load it is during the initialization tasks
handled by the InitInstance function. Add the following statement to InitInstance:

hHourGlass = LoadCursor(NULL, IDC_WAIT);

This makes the hourglass cursor available whenever it is needed.

6.5.5 Add a Lengthy Operation

A lengthy operation can take many forms. This sample is a function named
“sieve” that computes several hundred prime numbers. The operation begins
when the user presses ENTER. Add the following statements to the window func-
tion:

case WM_CHAR:
if (wParam == '\r') {
SetCapture(hWnd);

/* Set the cursor to an hourglass */
hSaveCursor = SetCursor(hHourGlass);

strcpy (str, "Calculating prime numbers...");
InvalidateRect (hWnd, NULL, TRUE);

UpdateWindow (hWnd);

sprintf(str, "Calculated %d primes. ", sieve());
InvalidateRect (hWnd, NULL, TRUE);

UpdateWindow (hWnd);

SetCursor(hSaveCursor); /* Restores previous cursor */
ReleaseCapture();

}

break;

When the user presses ENTER, Windows generates a WM_CHAR message whose
wParam parameter contains an ANSI value representing the carriage return.
When the window function receives a WM_CHAR message, it checks for this
value and carries out the sample lengthy operation, sieve. This function, called
Eratosthenes Sieve Prime-Number Program, is from Byte, January 1983. It is de-
fined as follows:

ffdefine NITER 20
ftdefine SIZE 8190

6-18 Guide to Programming

char flags[SIZE+1] = { @};

sieve() {
int i,k;
int iter, count;

for (iter = 1; iter <= NITER; iter++) {
count = @;
for (i = @; i <= SIZE; i++)
flags[i] = TRUE;

for (i = 2; i <= SIZE; i++) {
if (flags[il) {
for (k =1 + i; k <= SIZE; k += 1)
flags[k] = FALSE;
count++;

}
}

return (count);

6.5.6 Add the WM_LBUTTONDOWN, WM_MOUSEMOVE, and
WM_LBUTTONUP Cases

To carry out a selection, you can use the statements described in Section 6.3,
“Letting the User Select Information with the Mouse.” Add the following state-
ments to your window function:

case WM_LBUTTONDOWN:

bTrack = TRUE;

strcpy (str, "");

PrevX = LOWORD(1Param);

PrevY = HIWORD(1Param);

if (!(wParam & MK_SHIFT)) { /* If shift key is not pressed */
OrgX = LOWORD(1Param);
OrgY = HIWORD(1Param);

}

InvalidateRect (hWnd, NULL, TRUE);

UpdateWindow (hWnd);

/* Capture all input even if the mouse goes outside of window */

SetCapture(hWnd);
break;

The Cursor, the Mouse, and the Keyboard 6-19

case WM_MOUSEMOVE:
{

RECT rectClient;
int NextX;
int NextY;

if (bTrack) {
NextX LOWORD(1Param);
NextY HIWORD(1Param);

I

I

/* Do not draw outside the window's client area */

GetClientRect (hWnd, &rectClient);

if (NextX < rectClient.left) {
NextX = rectClient.left;

} else if (NextX >= rectClient.right) {
NextX = rectClient.right - 1;

}

if (NextY < rectClient.top) {
NextY = rectClient.top;

} else if (NextY >= rectClient.bottom) {
NextY = rectClient.bottom - 1;

}

/* If the mouse position has changed, then clear the */
/* previous rectangle and draw the new one. */

if ((NextX != PrevX) || (NextY != PrevY)) {
hDC = GetDC(hWnd);
SetROP2(hDC, R2_NOT); /* Erases the previous box */
MoveTo(hDC, OrgX, OrgY);
LineTo(hDC, OrgX, PrevY);
LineTo(hDC, PrevX, PrevY);
LineTo(hDC, PrevX, 0rgY);
LineTo(hDC, OrgX, OrgY);

/* Get the current mouse position */

PrevX = NextX;

PrevY = NextY;

MoveTo(hDC, OrgX, OrgY); /* Draws the new box */
LineTo(hDC, OrgX, PrevY);

LineTo(hDC, PrevX, PrevY);

LineTo(hDC, PrevX, OrgY);

LineTo(hDC, OrgX, OrgY);

ReleaseDC(hWnd, hDC);

break;

6-20 Guide to Programming

case WM_LBUTTONUP:

bTrack = FALSE; /* Ignores mouse input */

ReleaseCapture(); /* Releases hold on mouse input */
X = LOWORD(1Param); /* Saves the current value */

Y = HIWORD(TParam);

break;

6.5.7 Add the WM_KEYDOWN and WM_KEYUP Cases

In order to use the keyboard to control the cursor, you need to add WM_KEY-
DOWN and WM_KEYUP cases to the window function.

The statements in the WM_KEYDOWN case retrieve the current position of the
cursor and update the position when a DIRECTION key is pressed. Add the follow-
ing statements to the window function:

case WM_KEYDOWN:
GetCursorPos(&ptCursor);
if (wParam != VK_LEFT || wParam != VK_RIGHT ||
wParam != VK_UP || wParam != VK_DOWN)
break;

ScreenToClient(hWnd, &ptCursor);
repeat++; /* Increases the repeat rate */

switch (wParam) {

case VK_LEFT:
ptCursor.x -= repeat;
break;

case VK_RIGHT:
ptCursor.x += repeat;
break;

case VK_UP:
ptCursor.y -= repeat;
break;

case VK_DOWN:
ptCursor.y += repeat;
break;

default:
return (NULL);
}

GetClientRect(hWnd, &Rect); /* Gets the client boundaries */

The Cursor, the Mouse, and the Keyboard 6-21

if (ptCursor.x >= Rect.right)
ptCursor.x = Rect.right - 1;

else if (ptCursor.x < Rect.left)
ptCursor.x = Rect.left;

if (ptCursor.y >= Rect.bottom)
ptCursor.y = Rect.bottom - 1;

else if (ptCursor.y < Rect.top)
ptCursor.y = Rect.top;

ClientToScreen(hWnd, &ptCursor);
SetCursorPos(ptCursor.x, ptCursor.y);
break;

The GetCursorPos function retrieves the cursor position in screen coordinates.
To check the position of the cursor within the client area, the coordinates are con-
verted to client coordinates by using the ScreenToClient function. The switch
statement checks for the DIRECTION keys; each time it encounters a DIRECTION
key, the statement adds the current contents of the repeat variable to the appro-
priate coordinate of the cursor location.

The new position is checked to make sure it is still in the client area, using the
GetClientRect function to retrieve the dimensions of the client area. The posi-
tion is adjusted, if necessary. Finally, the ClientToScreen function converts the
position back to screen coordinates and the SetCursorPos function sets the new
position.

The WM_KEYUP case restores the initial value of the repeat variable when the
user releases the key, as shown in the following example:

case WM_KEYUP:

repeat = 1; /* Clears the repeat count */
break;

6.5.8 Add the WM _PAINT Case

To be sure that the text string and selection rectangle are redrawn when neces-
sary (for example, when another window has temporarily covered the client
area), add the following case to the window function:

case WM_PAINT:
{
PAINTSTRUCT pSs;

hDC = BeginPaint (hWnd, &ps);

if (OrgX != PrevX || OrgY != PrevY) {
MoveTo(hDC, OrgX, OrgY);
LineTo(hDC, OrgX, PrevY);
LineTo(hDC, PrevX, PrevY);
LineTo(hDC, PrevX, 0OrgY);
LineTo(hDC, OrgX, OrgY);

6-22 Guide to Programming

e —

TextOut (hDC, 1, 1, str, strlen (str));
EndPaint (hWnd, &ps);

}

break;

6.5.9 Add BULLSEYE.CUR to the Make File

In the make file, add the file BULLSEYE.CUR to the list of files on which
CURSOR .RES is dependent. The relevant lines in the make file should look like
the following:

CURSOR.RES: CURSOR.RC CURSOR.H BULLSEYE.CUR
RC -r CURSOR.RC

This ensures that, if the file BULLSEYE.CUR changes, CURSOR.RC will be re-
compiled to form a new CURSOR.RES file.

6.5.10 Compile and Link

Recompile and link the Cursor application. When the application is recompiled,
start Windows and the Cursor application. When you move the cursor into the
client area, it changes to the bull’s-eye shape.

Press and hold down the left mouse button, then drag the mouse to a new posi-
tion and release the mouse button. You should see a selection that looks like

Figure 6.1:
|_ Starting point
= Cursor Sample Application via
ﬂel
O
L Ending point

Figure 6.1 A Selection in the Cursor Application

Now press the DIRECTION keys to move the cursor. Then press ENTER to see the
application display the hourglass cursor to indicate that the lengthy operation is
in progress.

6.6 Summary

The Cursor, the Mouse, and the Keyboard 6-23

This chapter explained how to use the cursor in a Windows application. A cursor
is a special bitmap that allows the user to track actions initiated via the mouse.
Windows lets you change the shape of the cursor to suit your application’s needs.
You can use one of Windows’ built-in cursor shapes, or creat<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>